

e-ISSN:2582-7219

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

Volume 7, Issue 4, April 2024

6381 907 438

INTERNATIONAL STANDARD SERIAL NUMBER INDIA

 \odot

Impact Factor: 7.521

6381 907 438 🔛 ijmrset@gmail.com (

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521| Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

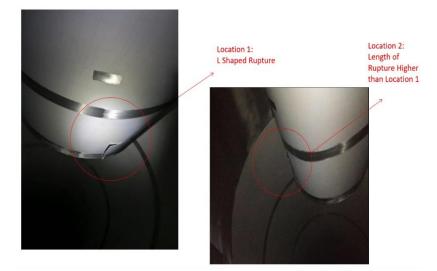
Crack Control and Rectification in Spray Powder Separator

Yogesh J. Tule, Prof. S. S Adewar, Prof. S.S. Borade

PG Student, Department of Mechanical Engineering, Zeal College of Engineering and Research, Pune, India

Assistance Professor, Department of Mechanical Engineering, Zeal College of Engineering and Research, Pune, India

Assistance Professor, Department of Mechanical Engineering, Zeal College of Engineering and Research, Pune, India


ABSTRACT: A gas-solid cyclone separator is a separation device that separates solid particles from a gas phase using a centrifugal force field. In traditional spray drying a cyclone separator is often included in a succeeding separation step, after a spray drying chamber. This thesis a study and analyzing crack propagation in Cyclone Insert cone, it includes brainstorming, collection of data, finding solutions by verification of parameters, material & FEM.

KEYWORDS: Spray Drying, Powder separation, cracks in process equipment's, cyclone, Material Testing, Autodesk Inventor, Fatigue analysis, Static Analysis, CFD output, ANSYS WORKBENCH

I. INTRODUCTION

Cyclone separators are used in food powder manufacturing industries to separate solid particles by cyclonic effect. There are change in velocities and pressure at inlet and outlet of cyclones and Air in with fine powder form cyclonic effect and move outward from small opening cone called Insert cone which gives change in velocity.

Here we are studying & analyzing various reasons for crack propagation on Cyclone separator Insert cone.

Figure 1: Crack on cyclone insert cone.

- 1. Particles hit the wall of the cyclone, decelerate, and separate from the air stream.
- 2. Particles fall under gravity towards catch-pot at the base of the cyclone.
- 3. Clean air passes to extraction source.
- 4. Captured particles in the catch-pot are removed for batch loss reconciliation, disposal, or reintroduction to the process (subject to QA and validation).

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

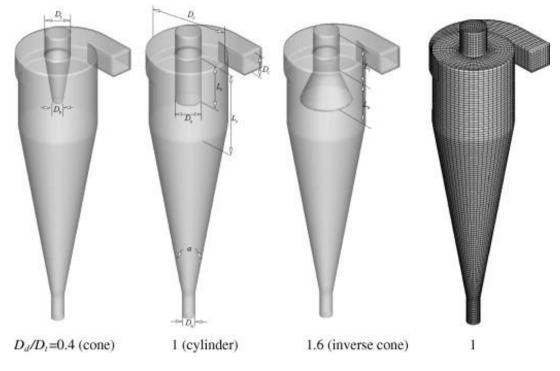


Figure 2: Various types in Cyclone

Purpose The purpose for this thesis is to investigate how spray drying is possible in cyclone separators. The changes of pressures Involved, Material study, Factors involved at time of production at customer site, FEM Analysis

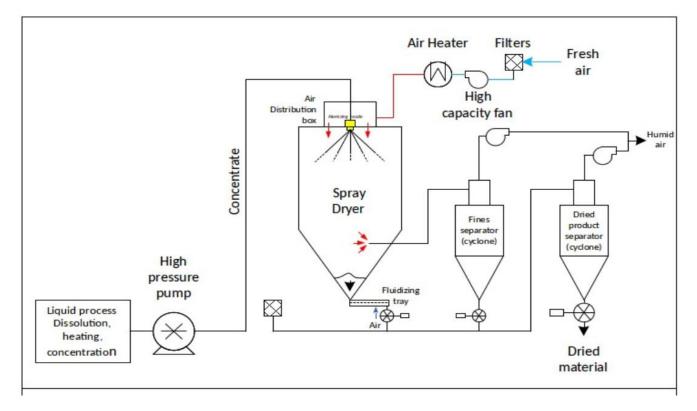


Figure 3: Working principle of Spray drying with Process flow diagram

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

The following drawing is a simplified flowsheet of a common spray drying process with co-current air / product flow in the spray dryer chamber and open-air cycle. There are more complicated and performant spray drying technologies, but the representation below somehow constitutes a minimum for an industrial line. Independently of the degree of complexity of the factory, the spray drying process is made of 5 main steps described thereafter.

Here various process are involved such as;

- 1. Wet Process
- 2. Atomization
- 3. Drying
- 4. Solid separation

Here as we are going to analyze Separator lets concentrate on that.

Separation

Industrial spray dryers can reach several tons / h and have typically large drying chambers and several nozzles. However, there is also on the market laboratory spray dryers (mini spray dryers) that are very useful for research work, or simply to get a 1st idea of a product and its easiness of drying before scaling up to the industrial line.

II. PROBLEM STATEMENT & BRAIN STORMING

 Crack in Insert cone. – When? What? How? When these cracks observed? What must be reason? What parameters to be check? How to analyze?

2. Parameters such as Pressure difference between Inlet and outlet of cyclone, Temperature need to be verified.

3. Brainstorming with technical team at site, Internal technical team, Quality team and design team performed, and various possibilities are generated, and action will be taken.

Results OF Brainstorming

- Focus of study will be to study and analyses the reason for cracks and how it can be optimized. These can be divided on following ways.
- Data for operating parameters; Pressure, Temperature etc.
- Study on data for any shocks observed.
- Testing material.
- Is dried product is corrosive?
- If all above stages are ok, then focus on;

III. FEM ANALYSIS WITH RESPECT TO OPERATIONAL DATA AND CFD INPUTS

CFD Analysis will be performed by CFD team & FEM Analysis will be done by me. Upon solution achievement; fabrication methods at site.

IV. OPERATING PARAMETERS

Data for operating parameters; Pressure, Temperature etc.

As mentioned in Manufacturing process Chapter. Pressure drop across cyclone is between 1000 to 2000 Pa. Mostly cyclones are calculated using design parameters which are above operational parameters. Design Temp; 120- 150 DegC** Pressure Shock Approx. 0.2 to 0.5 Bar** Vacuum. 1500 Pa** Pressure difference between Inlet and outlet depending on type of product. | ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

Against above standard data; Verification has been done for component in operation. At check point it seems correct values, but real time analysis to be performed when crack is observed. For real time analysis, I made a checklist to discuss with peoples involved on verification of parameters to understand how crack was detected, time and change in parameters observed.

Study on data for any shocks observed Recent Article from Bharti Vidyapeeth Technology, Mumbai on crack propagation & Process study from K. Masters Handbook.

Any defect or crack on the surface of process equipment like pressure vessel can lead to a fatal accident during operation, so it needs to be crack analysis. The present work has done to review the methods and techniques to analyze the process equipment like pressure vessel. Hence procedure could be developed to analyze or to test process equipment like pressure vessel based on operating parameters by using techniques like SIFs by validate the results with the FEA results.

From discussion and brainstorming with inside stake holders of my company.

As our components are designed as per process parameters and validated with FEA analysis. It was time to study different approach for parameter which cause a crack. Crack in any process equipment can occur if process parameter goes beyond design parameters, Sudden shock waves, large pressure differences. Crack can occur also, if material selection is incorrect or used material is not as per requirement which may corrode if not stainless steel.

Testing material.

Chemical and Mechanical test has been performed for fractured material. Test report snaps are shown in fellow figures,

Our Reference: Z-12986			
	Test Certificate		Page 1 of
COMPANY NAME :	Your Reference		
SATYAM FABRICATORS PLOT NO-177/3.NO-7, PCNTDA BHOSARI	Your Reference Our Receipt Dat		/01/2022
PLOT NO-17773.NO-7, PCNTDA BHOSARI PCNTDA BHOSARI	Report Date :		
PUNE-MS-411026			
dentification :50 X 5MM THK , Material Specification : ASME Se 30400	ction II Part A SA 240:2017:TYPE 30	I - UNS	-
Sample Description : Flat			
Chemical Analysis : Test Method : ASTM E 1086 : 2014			ting Date: 14/07/2018
Sr.No Element	Min Value	Max Value	Observed Value
1 % C (Carbon)		0.0700 2.0000	0.033
2 % Mn (Manganese)		0.7500	0.41
3 % Si (Silicon)		0.0300	< 0.00050
4 % S (Sulphur) 5 % P (Phosphorous)		0.0450	0.029
6 % Cr (Chromium)	17.5000	19.5000	18.22
7 % Ni (Nickel)	8.0000	10.5000	8.10
8 % N (Nitrogen)		0.1000	0.045
\$30400 For Chemical Analysis Only.			-
304 - UNS \$30400 Conclusion : The above Sample Conforms To ASME Section I \$30400 For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		1
304 - UNS \$30400 Conclusion : The above Sample Conforms To ASME Section I \$30400 For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS \$30400 Conclusion : The above Sample Conforms To ASME Section I \$30400 For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS \$30400 Conclusion : The above Sample Conforms To ASME Section I \$30400 For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS \$30400 Conclusion : The above Sample Conforms To ASME Section I \$30400 For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		
304 - UNS 530400 Conclusion : The above Sample Conforms To ASME Section I 530400 - For Chemical Analysis Only.	I Part A 5A 240:2017:TYPE 304 - U		

Chemical for 5mm thick Material.

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

Chemical for 3mm thick Material.

Parameter Min Value Max Value Observation Test Temperature (°C) Test Specimen Type Severage Victorian Severage Victorian<	Your Reference Date : Our Receipt Date : 06/01/2022 Report Date : 06/01/2022 In II Part A SA 240:2017: TYPE 304L - UNS \$30403 5 Size : 3.00(Thickness) 5 Section II-A:SA 370 : 2015 Testing Date:08/07/2018 Min Value Max Value Observed Value Ambient. Flat 12:.50 2.96 37:.00 50:.00 50:.00 12:.48 79:.11 70:.00 37:.00 337:.30 50:.00 628.11 0xr MPa) 485:.00 628.11 0xr MPa) 0.0300 0.029 0xr MPa) 0.0300 0.029 0xr MPa) 0.0300 0.029 0xr MPa) <th>ATYAM FABRICATORS Your Reference Date : Our Receipt Date : Decempt Date: Decempt Date : Decemp</th> <th>r Reference: Z-12068</th> <th>Test C</th> <th>ertificate</th> <th>1 States</th> <th>Page 1 of 4</th>	ATYAM FABRICATORS Your Reference Date : Our Receipt Date : Decempt Date: Decempt Date : Decemp	r Reference: Z-12068	Test C	ertificate	1 States	Page 1 of 4
LOT NO-177/3.NO-7. PCNTDA BHOSARI Our Receipt Date : 06/01/2022 CNTDA BHOSARI Report Date : UNE-MS-411026 I I Summer Stress SUM3 I mple Description : Plate Size :3.00(Thickness) Testing Date:1 mark of the Stress Min Value Max Value Observalue Parameter Min Value Max Value Observalue Test Temperature (°C) Test Specimen Type I I Average Thickness (mm) Average Thickness (mm) I I Average Thickness (mm) I I I I Yield Load (KN) I I I I I Yield Stress (N/mm2 or MPa) 170.00 I I I I Yield Stress (N/mm2 or MPa) 485.00 Xeorage Length (mm) I I I I I I I I I I I I I I I Xeorage Length (mm) I I I I	MoSARI Our Receipt Date : 06/01/2022 Report Date :	LOT NO-1777.3.NO-7, PCNTDA BHOSARI Our Receipt Date : eport Date : Report Date :	OMPANY NAME :		Your Reference		
Report Date :	Report Date : Imilian II Part A SA 240:2017:TYPE 304L - UNS \$30403 Size :3.00(Thickness) Section II-A:SA 370 : 2015 Mini Value Max Value Observed Value Ambient Flat 2.96 37.00 50.00 2.96 37.00 50.00 2.96 37.00 50.00 2.96 37.00 50.00 2.96 37.00 50.00 2.96 37.00 50.00 2.96 37.00 50.01 2.96 37.00 50.02 2.96 37.00 50.01 2.296 37.00 37.00 37.00 50.01 50.01 50.02 50.02 60.00 50.00 50.00 60	CNTO & BHOSARI Report Date : UNE-AS-11026 I Une in Specification : ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 migle Description : Plate Size : 3.00(Thickness) ensile Test : Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:08/07/2018 Parameter Min Value Max Value Observed Value Test Specimen Type Flat Ambient Testing Date:08/07/2018 Average Thickness (mm) 2.96 Size : 3.00(Thickness) Title: 3.00 Gauge Length (mm) 5.00.00 Size : 3.00.00 Size : 3.00.00 Yield Load (KN) 5.00.00 Size : 3.00.00 Size : 3.00.00 Yield Stress (N/mm2 or MPa) 170.00 337.30 Uttimate Load (KN) 5.00.00 Size : 3.00 Tracture Load (KN) 5.00.00 Size : 3.00 Tracture Load (KN) 5.00.00 Size : 3.00 Testing Gauge Length (mm) 5.00.00 Size : 3.00 Yield Stress (N/mm2 or MPa) 170.00 3.37.30 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 Cotalin Fracture Load (K	TYAM FABRICATORS		Your Reference	Date :	
UNE-MS-411026 Image Description : Plate Size :3.00(Thickness) mple Description : Plate Size :3.00(Thickness) Testing Date:0 ensile Test : Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:0 Parameter Min Value Max Value Observ Test Temperature (°C) Test Temperature (°C) Average Mich (mm) Average Mich (mm) Average Width (mm) Average Area (Sq. mm) Average Area (Sq. mm) Gauge Length (mm) Stield Load (KN) Image Length (mm) Yteld Load (KN) Image Length (mm) Yteld Stess (N/mn2 or MPa) 170.00 Image Length (mm) Image Length (mm) Yteld Stess (N/mn2 or MPa) 485.00 Image Length (mm) Image Length (mm) Yteld Stess (N/mn2 or MPa) 40.00 Image Length (mm) Image Length (mm) Yteld Stess (N/mn2 or MPa) 40.00 Image Length (mm) Image Length (mm) Yteld Stess (N/mn2 or MPa) 40.00 Image Length (mm) Image Length (mm) Yteld Stess (N/mn2 or MPa) 40.00 Image Length (mm) Image Length (mm) Yteld Stess (Stess (N/mn2 or MPa) 40.00 Imag	in II Part A SA 240:2017: TYPE 304L - UNS S30403 Size : 3.00(Thickness) Section II-A:SA 370 : 2015 Min Value Ambient Flat 12:50 2.96 37:00 2.96 37:00 12:48 37:00 12:48 37:00 37	UNE-MS-411026 I terial Specification : ASME Section II Part A SA 240:2017: TYPE 304L - UNS S30403 Testing Date:08/07/2018 mple Description : Plate Size : 3.00(Thickness) Testing Date:08/07/2018 Parameter Min Value Max Value Observed Value Test Temperature (°C) Ambient Flat Testing Date:08/07/2018 Average With (mm) 12.50 Average With (mm) 12.50 Average Thickness (mm) 2.96 Average Area (Sq. mm) 37.00 Average Area (Sq. mm) 50.00 12.48 Uttimate Load (IKN) 12.48 12.48 Uttimate Load (IKN) 12.48 12.48 Uttimate Tensile Stress (N/mm2 or MPa) 170.00 337.30 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 % Elongation 40.00 58.22 Fracture Load (IKN) Uttimate Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 Verdig Date:06/07/2018 Sr.No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029				te : 06,	/01/2022
Iterial Specification : ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 mple Description : Plate Size :3.00(Thickness) smalle Test : Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:C Parameter Min Value Max Value Observ Test Specimen Type Min Value Max Value Observ Average Width (mm) Average Thickness (mm) Average Thickness (mm) Average Area (Sq. mm) Gauge Length (mm) Yield Load (KN) Final Gauge Length (mm) Yield Load (KN) Vittid Stress (N/mm2 or MPa) 170.00 Testing Date:C Vittid Stress (N/mm2 or MPa) 485.00 Testing Date:C Xetage Length (mm) Yield Stress (N/mm2 or MPa) 40.00 Fracture Topic Fracture Load (KN) Emmedia Analysis : Test Method : ASTM E 1086 : 2014 Testing Date:C Struke Elenent Min Value Max Value Observalue Observalue Zum2 or MPa) Carbon Observalue Yield Stress (M/maganese) Quodo Zum2 or MPa Testing Date:C Yield Stress (M/maganese) Quodo Zum2 or MPa Min Value Ma	Size :3.00(Thickness) Testing Date:08/07/2018 Min Value Max Value Observed Value Ambient Flat - 12.50 - - 2.96 - - 37.00 - - 12.48 - - 2.96 - - 37.00 - - 170.00 - - 32.4 - - 170.00 - - 50.01 - - 170.00 - - 50.01 - - 50.02 - - 79.11 - - - 170.00 - - - 50 ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 - - ASTM E 1086 : 2014 Testing Date:06/07/2018 - Min Value Max Value Observed Value - 0.0300 - 0.0300 - - 2.0000 1.07 - - -	Iterial specification : ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 mple Description : Plate Size : 3.00(Thickness) Parameter Min Value Max Value Observed Value Test Temperature (°C) Ambient Flat Average Width (mm) Size : 3.00(Thickness) Average Width (mm) Size : 3.00(Thickness) Average Width (mm) Min Value Max Value Observed Value Average Width (mm) Min Value Max Value			Report Date :		
mple Description : Plate Size : 3.00(Thickness) ensile Test : Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:C Parameter Min Value Max Value Observ Test Temperature (°C) Min Value Max Value Observ Test Specimen Type Average Wint Value Max Value Observ Average Entickness (mm) Average Thickness (mm)	Size :3.00(Thickness) Testing Date:08/07/2018 Min Value Max Value Observed Value Ambient Filat 12.50 - 2.96 - 37.00 - 2.96 - 37.00 - 2.96 - 37.00 - 2.96 - 37.00 - 2.96 - 37.00 - 2.96 - 37.00 - 37.00 - 2.96 - 37.00 - 50.00 - 12.48 - 37.90 - 50.01 - 170.00 - 337.30 - 50 rMPa) 485.00 - 485.00 - - 50 rMPa) 485.00 - 60.00 - - 50 rMPa) 485.00 - 60 rMB - -	mple Description : Plate Size :3.00(Thickness) parameter Min Value Max Value Observed Value Parameter Min Value Max Value Observed Value Test Temperature (°C) - Flat Average Width (mm) - State: 0.00(Thickness) - State: 0.00(Thickness) Average Width (mm) - - - State: 0.00(Thickness) -		A 240-2017-TVDE 2041	1		
Insile Test: Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:C Parameter Min Value Max Value Observ Test Emperature (°C) Test Specimen Type Average Vidth (mm) Average Vidth (mm) Average Vidth (mm) Average Vidth (mm) Average Vidth (mm) Average Vidth (mm) Average Vidth (mm) Average Vidth (mm) Yield Load (RN) Yield Load (RN) Ultimate Load (RN) Yield Stress (N/mm2 or MPa) 170.00 Ultimate Tensile Stress (N/mm2 or MPa) Ultimate Tensile Stress (N/mm2 or MPa) 485.00 Xielongation Utimate Tensile Stress (N/mm2 or MPa) Fracture Location Fracture Type Testing Date:0 Testing Date:0 Sr.No Element Min Value Max Value Observe 1< & C (Carbon)	Section II-A:SA 370 : 2015 Testing Date:08/07/2018 Min Value Max Value Observed Value Ambient Flat 12.50 2.96 37.00 37.00 50.00 12.50 23.24 79.11 170.00 337.30 5r MPa) 485.00 628.11 40.00 58.22 W.G.L Ductille Ductille Ductille fo ASME Section II Part A SA 240:2017;TYPE 304L - UNS \$30403 Testing Date:06/07/2018 ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.0.79 0.7550 0.24 0.0300 <0.010	Insile Test: Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:08/07/2018 Parameter Min Value Max Value Observed Value Test Emperature (°C) Ambient Flat Average Widh (mm) 12.50 Ambient Average Widh (mm) 2.96 37.00 Average Area (S., mm) 37.00 37.00 Gauge Length (mm) 50.00 12.48 Ultimate Load (KN) 23.24 50.00 Final Gauge Length (mm) 79.11 37.00 Yield Stress (N/mm2 or MPa) 170.00 337.30 Ultimate Tensile Stress (N/mm2 or MPa) 485.00 668.11 % Elongation 40.00 58.22 Fracture Type Ductile Testing Date:06/07/2018 Sr.No Element Min Value Max Value Observed Value 1 % C (arbon) 0.0300 0.029 2 % Min Manganese) 0.0300 0.029 2 % Min (Manganese) 0.0450 0.0300 <0.030					
Test Temperature (%C) Test Specimen Type Average Width (mm) Average Width (mm) Average Mickness (mm) Average Area (\$G, mm) Gauge Length (mm) Yield Load (KN) Ultimate Load (KN) Yield Stress (N/mn2 or MPa) Yield Stress (N/mn2 or MPa) Test Stress (N/mn2 or MPa) Yield Stress (N/mn2 or MPa) Test Stress (N/mn2 or MPa) Test Stress (N/mn2 or MPa) Yield Stress (N/mn2 or MPa) Test Test Stress (N/mn2 or MPa)	Ambient Flat Flat 12:50 12:50 12:50 12:50 37:00 37:00 12:48 37:00 12:48 12	Test Temperature (%C) Amblent Test Spectrimen Type Flat Average Width (mm) 12.50 Average Width (mm) Average Width (mm) Average Michkenes (mm) Gauge Length (mm) Yield Load (KN) Yield Load (KN) Yield Load (KN) Yield Sauge Length (mm)				Tes	ting Date:08/07/2018
Test Temperature (%C) Test Specimen Type Average Width (mm) Average Width (mm) Average Mickness (mm) Average Area (\$G, mm) Gauge Length (mm) Yield Load (KN) Ultimate Load (KN) Yield Stress (N/mn2 or MPa) Yield Stress (N/mn2 or MPa) Test Stress (N/mn2 or MPa) Yield Stress (N/mn2 or MPa) Test Stress (N/mn2 or MPa) Test Stress (N/mn2 or MPa) Yield Stress (N/mn2 or MPa) Test Test Stress (N/mn2 or MPa)	Ambient Flat Flat 12:50 2.96 37:00 50:00 12:48 50:00 12:48 12:48 52:24 79:11 170:00 337:30 79:11 170:00 337:30 628:11 0.00 56:22 W.G.L Ductle To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 ASTM E 1086 : 2014 Min Value 0.0300 0.029 2.0000 1.07 0.030 0.029 2.0000 1.07 0.030 0.029 2.0000 1.07 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 1.07 0.045 0.030 1.07 0.030 0.029 0.030 0.04 0.030 0.04 0.030 0.055 0.04 0.055	Test Temperature (%C) Amblent Test Spectrimen Type Flat Average Width (mm) 12.50 Average Width (mm) Average Width (mm) Average Michkenes (mm) Gauge Length (mm) Yield Load (KN) Yield Load (KN) Yield Load (KN) Yield Sauge Length (mm)	Parameter		Min Value	Max Value	Observed Value
Average Width (mm) Average Thickness (mm) Average Thickness (mm) Average Thickness (mm) Average Thickness (mm) Image Lengt (mm) Yield Load (KN) Image Lengt (mm) Yield Load (KN) Image Lengt (mm) Yield Stress (N/mm2 or MPa) 170.00 Ultimate Tensile Stress (N/mm2 or MPa) 485.00 % Elongation 40.00 Fracture Load In Testing Date:0 Fracture Type Image Lengt (mm) Streamer - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 Image Lengt (mm) Str.No Element Min Value Max Value Observa 1 % C (carbon) 0.0300 Image Lengt (mm) Image Lengt (mm) Image Lengt (mm) 2 % Mn (Manganese) 2.0000 Image Lengt (mm) Image Lengt (mm) Image Lengt (mm) 3 % S (Sillcon) 0.0300 Image Lengt (mm) Image Lengt (mm) Image Lengt (mm) 2 % Mn (Manganese) 0.0430 Image Lengt (mm) Image Lengt (mm) Image Lengt (mm) Image Lengt (mm) 3	12.50 2.96 37.00 50.00 12.48 23.24 79.11 170.00 337.30 50.00 12.48 23.24 79.11 170.00 337.30 50 MPa) 485.00 40.00 58.22 W.G.L Ductile 50 ASME Section II Part A SA 240:2017:TYPE 304L - UNS \$30403 Ductile ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7550 0.24 0.0300 <0.0010	Average Width (mm) 12.50 Average Thickness (mm) 2.96 Average Thickness (mm) 37.00 Average Area (Sq. mm) 37.00 Gauge Length (mm) 12.48 Uttimate Load (KN) 12.48 Uttimate Load (KN) 233.20 Uttimate Tensile Stress (N/mm2 or MPa) 170.00 337.30 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 % Elongation 40.00 58.22 Fracture Type W.G.I. 53040J emmark - Tensile Test Conforms To ASME Section III Part A SA 240:2017:TYPE 304L - UNS 5304UJ 0bserved Value 1 % C (carbon) 0.0300 0.029 2 % Am (Manganese) 2.0000 1.070 3 % I (Sillcon) 0.0300 <0.0010					Contraction of the second s
Average Thickness (mm) Average Area (Sq. mm) Gauge Length (mm) Yield Load (KN) Tinal Gauge Length (mm) Yield Stress (N/mm2 or MPa) Tinal Gauge Length (mm) Yield Stress (N/mm2 or MPa) Tinal Gauge Length (mm) Yield Stress (N/mm2 or MPa) Timal Gauge Length (mm) Yield Stress (N/mm2 or MPa) Testile Test (N/mm2 or MPa) Testile Test (N/mm2 or MPa) Testile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 Testile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 Testile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 Sr.No Element Min Value Max Value Observalue Sr.No Element Min Value Max Value Observalue 1 % C (arbon) 0.03300 0 0 2 % Mn (Maganese) 0.03300 0 0 3 % S (Sulphur) 0.0430 0 0 5 % P (Phosphorous) 0.0450 0 0.0450 <tr< td=""><td>2.96 37.00 50.00 12.48 23.24 79.11 170.00 337.30 or MPa) 485.00 628.11 40.00 58.22 W.G.L Ductlle 50.300 ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 <0.010</td> 0.0450 0.030 17.5000 18.25 8.0000 12.0000 8.0000 12.0000 0.1000 0.661</tr<>	2.96 37.00 50.00 12.48 23.24 79.11 170.00 337.30 or MPa) 485.00 628.11 40.00 58.22 W.G.L Ductlle 50.300 ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 <0.010	Average Area (Sq. mm) 2.96 Average Area (Sq. mm) 37.00 Gauge Length (mm) 50.00 Final Gauge Length (mm) 23.24 Final Gauge Length (mm) 77.01 Yield Stress (N/mn2 or MPa) 170.00 337.30 Uttimate Tensile Stress (N/mn2 or MPa) 445.00 58.22 Fracture Location 40.00 58.22 Fracture Type W.G.L W.G.L Etemark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 00served Value 1 % C (arbon) 0.0300 0.029 2 % Mn (Manganese) 0.0300 0.029 2 % Mn (Manganese) 0.0300 <0.010	Test Specimen Type				
Average Area (Sq. mm) Science Gauge Length (mm)	37.00 50.00 12.48 23.24 79.11 170.00 337.30 or MPa) 485.00 628.11 40.00 58.22 W.G.L Ductile Double 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0450 0.030 17.5000 18.25 8.0000 15.900 0.1000 0.61	Average Area (Sq. mm) 37.00 Gauge Length (mm) 50.00 Yield Load (KN) 12.48 Utimate Load (KN) 79.01 Yield State (Mm) 79.01 Yield State (Mm) 79.00 Utimate Tensile Stress (N/mm2 or MPa) 170.00 337.30 Utimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 K Elongation 40.00 58.22 Fracture Topic 40.00 58.22 Fracture Topic 40.00 58.22 Fracture Topic 90.01 90.01 Tracture Topic 90.01 90.02 Str.No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029 2 % Min Kanganese) 0.0300 0.029 3 % S (Sulphur) 0.0450 0.0300 5 % P (Phosphorous) 0.0450 0.0300 6 % Cr (Chromium) 17.5000 19.5000 18.25 8 N (Nikrogen) 0.0450 0.0300 <0.0300					
Gauge Length (mm) Yield Load (KN) Ultimate Load (KN) Final Gauge Length (mm) 170.00 Yield Stress (N/mm2 or MPa) 170.00 Ultimate Tensile Stress (N/mm2 or MPa) 485.00 & Elongation 40.00 Fracture Torsile Stress (N/mm2 or MPa) 40.00 Fracture Tope Fracture Location Fracture Tope Fracture Location Fracture Location Testing Date:0 Sr.No Element Min Value Max Value Observante:0 1 % C (Carbon) 0.0300 2 2 Min Value Max Value Observante:0 2 % Min (Manganese) 2.0000 2 3 % Si Silicon) 0.0300 2 3 % Si Silicon) 0.0300 0 2 0.0450 0 5 % P (Phosphorous) 0.0450 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.00 12.48 23.24 79.11 170.00 337.30 65.00 628.11 40.00 485.00 628.11 40.00 485.00 628.11 40.00 40.00 56.11 40.00 40.00 56.11 40.00 56.12 W.G.L Ductile 70.00 50.300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 17.5000 18.25 8.0000 0.1000 0.061	Gauge Length (mm) 50.00 Yield Load (KN) 12.48 Ultimate Load (KN) 73.10 Gauge Length (mm) 77.11 Yield Stress (N/mm2 or MPa) 170.00 337.30 Ultimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 X Elongation 40.00 58.22 Fracture Location 485.00 628.11 rencile Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 Testing Date:06/07/2018 Sr.No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029 0.0450 0.0300 2 % Min Value Max Value Observed Value 0.107 0.7500 0.224 3 % Si (Silicon) 0.7500 0.0300 0.0300 0.0010 5 % P (Phosphorous) 0.0450 0.0300 0.0010 0.859 8 % N (Nitrogen) 0.1000 0.061 8579 8 N (Nitrogen) 0.1000 0.061 1 L-UNF S30403 <td></td> <td></td> <td></td> <td></td> <td></td>					
Yield Load (KN) Uttimate Load (KN) Final Gauge Length (mm) Yield Stress (N/mm2 or MPa) 170.00 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 & Elongation 40.00 Fracture Load in Fracture Load in Fracture Load in Testing Date:0 Sr.No Element Min Value Max Value Observa 1 % C (Carbon) 0.0300 2 2 % Mn (Manganese) 2.0000 2 3 % S (Sillcon) 0.7500 0.0300 5 % P (Phosphorous) 0.0450 0.0450 6 % C (Chromium) 17.5000 19.500 7 % Ni (Nickel) 8.0000 12.0000	12.48 23.24 79.11 170.00 337.30 or MPa) 485.00 40.00 58.22 W.G.L Ductile 50 ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7550 0.24 0.0300 <0.010	Yield Load (KN) 12.48 Ultimate Load (KN) 23.24 Final Gauge Length (mm) 79.11 Yield Stress (N/mm2 or MPa) 170.00 337.30 Ultimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 % Elongation 40.00 58.22 Fracture Type W.G.L W.G.L remark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS \$30403 W.G.L temmark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS \$30403 Observed Value 1 % C (carbon) 0.0300 0.029 2 % Mn (Maganese) 2.0000 1.077 3 % S (Sillphur) 0.0300 <0.010					
Millmate Load (KN) Final Gauge Length (mm) Yield Stress (N/mn2 or MPa) 1700.00 Witimate Tensile Stress (N/mn2 or MPa) 485.00 % Elongation 40.00 Fracture Iocation Fracture Type mark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 remark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 remark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 remark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 Sr.No Element Min Value Max Value Observin 0.0300 1 % C (arbon) 0.0300 2 % Mn (Maganese) 0.0300 3 % S (Sulphur) 0.0430 5 % P (Phosphorous) 0.0450 6 % C (Chromium) 17.5000 19.5000 7 % Ni (Nickel) 8.0000 12.0000	23.24 79.11 170.00 337.30 or MPa) 485.00 628.11 40.00 58.22 W.G.L W.G.L Ductile Ductile To ASME Section II Part A SA 240:2017;TYPE 304L - UNS \$30403 ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 <0.010	Ultimate Load (KN) 23.24 Final Gauge Length (mm) 79.11 Yield Stress (N/mn2 or MPa) 170.00 337.30 Ultimate Tensile Stress (N/mn2 or MPa) 485.00 682.11 % Elongation 40.00 58.22 Fracture Location 40.00 58.22 Fracture Location 40.00 58.22 Barrier Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 Ductile semark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403 005erved Value 1 % C (carbon) 0.0300 0.029 2 % Mn (Manganese) 0.0300 0.029 3 % S (Sulphur) 0.0300 <0.0010					and the first state of the second state of the
Final Gauge Length (mm) Yield Stress (N/mm2 or MPa) 170.00 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 & Elongation 40.00 * Elongation 40.00 Fracture Location ************************************	79.11 170.00 337.30 or MPa) 485.00 628.11 40.00 58.22 W.G.L Ductile W.G.L Ductile fo ASME Section II Part A SA 240:2017:TYPE 304L - UNS \$30403 Testing Date:06/07/2018 ASTM E 1086 : 2014 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.030 <0.010	Final Gauge Length (mm) 79.11 Final Gauge Length (mm) 170.00 337.30 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 K Elongation 40.00 58.22 Fracture Location 40.00 58.22 Fracture Type W.G.L W.G.L emical Analysis : Test Method : ASTME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 Testing Date:06/07/2018 Sr.No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029 2 % Min (Anganese) 0.0300 <0.010					
Yield Stress (N/mm2 or MPa) 170.00 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 % Elongation 40.00 Fracture Location Fracture Location Fracture Type Fracture Location Emmel Analysis : Test Method : ASTM E 1086 : 2014 Testing Date:0 Sr.No Element Min Value Max Value Observe 1 % C (Carbon) 0.0300 - - 2 % Mn (Manganese) 2.0000 - - 3 % S (Silicon) 0.7500 - - 4 % S (Sulphur) 0.0300 - - 5 % P (Phosphorous) 0.0450 - - 6 % C (Chromium) 17.5000 19.500 -	170.00 337.30 or MPa) 485.00 628.11 40.00 58.22 W. G.L Ductile To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 Juctile ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 < 0.0010	Yield Stress (N/mm2 or MPa) 170.00 337.30 Uttimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 % Elongation 445.00 58.22 Fracture Location 58.22 Testing Date:06/07/2018 Fracture Location Testing Date:06/07/2018 Testing Date:06/07/2018 Sr.No Element Min Value Max Value Observed Value 1 % C (Carbon) 2.0000 0.029 2 % Min (Manganese) 2.0000 0.024 3 % Si (Silicon) 0.0450 0.0300 5 % P (Phosphorous) 0.0450 0.0300 5 % P (MinSphorous) 0.0450 0.0300 6 % C (Chromium) 17.5000 19.5000 18.25 7 % Ni (Nitrogen) 0.1000 0.0450 0.0300 6 % C (Chromium) 17.5000 19.5000 18.25 7 % Ni (Nitrogen) 0.1000 0.061 8 % Nitrogen) 0.1000 0.061 9 8 % Nitrogen) 0.1000 0.661 9 % Nitro					
Minute Tensile Stress (N/mm2 or MPa) 485.00 % Elongation 40.00 Fracture Location Fracture Type semical Analysis : Test Method : ASTM E 1086 : 2014 Testing Date:0 Sr.No Element Min Value Max Value Observa 1 % C (Carbon) 0.0300 Carbon 0.0300 2 % Min (Manganese) 2.0000 0.7500 Carbon 0.0300 Carbon 0.0300 Carbon 0.0300 Carbon 0.0450 Carbon	AB5.00 628.11 40.00 58.22 W.G.L W.G.L Ductile Ductile Fo ASME Section II Part A SA 240:2017:TYPE 304L - UNS \$30403 Testing Date:06/07/2018 ASTM E 1086 : 2014 Testing Date:06/07/2018 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 <0.030	Ultimate Tensile Stress (N/mm2 or MPa) 485.00 628.11 % Elongation 40.00 58.22 Fracture Location W.G.L W.G.L reacture Type Ultimate Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 53040J Untime Testing Date:06/07/2018 Sr.No Element Max Value Observed Value 1 % C (Carbon) 2.0000 0.029 2 % Mn (Manganese) 2.0000 0.024 3 % S (Sillcon) 0.0300 <0.0010			170.00		
K Elongation 40.00 Fracture Location Fracture Location Fracture Location Fracture Type smark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS \$30403 Testing Date:0 semical Analysis : Test Method : ASTM E 1086 : 2014 Min Value Max Value Observing 1 % C (carbon) 0.0300 0.0300 0 2 % Mn (Maganese) 0.0300 0 0 3 % S (Skilphur) 0.0300 0 0 5 % P (Phosphorous) 0.0450 0 0 6 % C (Chromium) 17.5000 19.5000 0 7 % Ni (Nickel) 8.0000 12.0000 0	40.00 58.22 W.G.L Ductile 50 ASME Section II Part A SA 240:2017;TYPE 304L - UNS S30403 Testing Date:06/07/2018 ASTM E 1086 : 2014 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7550 0.24 0.0300 <0.010	% Elongation 40.00 58.22 Fracture Location W. G. L. W. G. L. Fracture Location U.C. II DuctIle Fracture Type DuctIle DuctIle mark - Tensile Test Conforms To ASME Section II Part A SA 240;2017:TYPE 304L - UNS 530403 Testing Date:06/07/2018 Sr.No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029 2 % Mn (Manganese) 0.0300 0.029 3 % S (Sulphur) 0.0300 <0.010					
Min Value Max Value Observe 3 % Si (Silicon) 0.0300 - 3 % Si (Silicon) 0.0300 - 5 % P (Phosphorous) 0.0300 - 6 % C (Chromium) 17.5000 19.500	Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.0300 0.029 0.0300 0.029 0.0300 0.029 0.0300 0.029 0.0300 0.029 0.0300 1.07 0.0300 0.0300 0.030 1.24 0.0300 < 0.0010	Fracture Location W. G. Location Fracture Type Juct like emark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 Testing Date:06/07/2018 Sr. No Element Min Value Observed Value 1 % C (Carbon) 0.000 0.0029 2 % Min (Manganese) 0.000 0.0010 3 % S (Sulphur) 0.000 0.0029 4 % S (Sulphur) 0.000 0.0020 5 % P (Phosphorous) 0.0100 0.0030 6 % C (Chromium) 17.5000 12.0000 0.024 7 % N (Nitrogen) 0.000 12.0000 0.0101 7 % N (Nitrogen) 0.1000 0.061 memark - Themical Analysis by Spectror Metrof Conforms To ASME Section II Part A SA 240:2017:TYPE 0.0001 7 % N (Nitrogen) 0.1000 0.061 94L - UNS 330403 Stest Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:07/07/2018 Reminitering Lacation Scale Ander Malu Max R1 R2 R3 804					
Armark - Tensile Test Conforms To ASME Section II Part & SA 240:2017:TYPE 304L - UNS \$30403 termical Analysis : Test Method : ASTM E 1086 : 2014 Testing Date:0 Sr.No Element Min Value Max Value Observa 1 % C (Carbon) 0.0300 0.0300 0.0300 2 % Mn (Manganese) 2.0000 0.7500 0.0300 3 % S (Siulphur) 0.0300 0.0450 0.0450 5 % P (Phosphorous) 0.0450 0.0450 0.0450 6 % C (Chromium) 17.5000 19.5000 0.12.0000 0.12.0000 0.12.0000 0.12.0000 0.12.0000 0.045	To ASME Section II Part A SA 240:2017;TYPE 304L - UNS 530403 ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 < 0.0010 0.0450 0.030 17.5000 19.5000 18.25 8.0000 12.0000 8.59 0.1000 0.061	emark - Tensile Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS 530403 Testing Date:06/07/2018 Sr.No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029 2 % Mn (Manganese) 2.0000 1.07 3 % SI (Silicon) 0.7500 0.244 4 % S (Sulphur) 0.0300 <0.0010					
Min Value Max Value Observing Sr. No Element Min Value Max Value Observing 1 % C (Carbon) 0.0300 0.0300 2 % Min (Maganesc) 0.0300 0.0300 3 % S (Skilphur) 0.0300 0.0300 5 % P (Phosphorous) 0.0450 0.0450 6 % C (Chornium) 17.5000 19.5000 7 % NI (Nickel) 8.0000 12.0000	ASTM E 1086 : 2014 Testing Date:06/07/2018 Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 <0.0010 0.0450 0.030 17.5000 19.5000 18.25 8.0000 12.0000 8.59 0.1000 0.061	Analysis : Test Method : ASTM E 1086 : 2014 Testing Date:06/07/2018 Sr. No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029 2 % Mn (Maganese) 0.0300 0.029 3 % S (Sillcon) 0.7500 0.244 4 % S (Sulphur) 0.0450 0.0300 <0.0010	Fracture Type				Ductile
Kr.No Element Min Value Max Value Observent 1 % C (Carbon) 0.0300 0.0300 0.0300 2 % Mn (Manganese) 2.0000 0.7500 0.0300 3 % Si (Silicon) 0.07500 0.0300 0.0300 4 % S (Sulphur) 0.0300 0.0450 0.0450 5 % P (Phosphorous) 0.0450 0.0450 0.0450 6 % C (Chromium) 17.5000 19.5000 0.0450 7 % Ni (Nickel) 8.0000 12.0000 0.0450	Min Value Max Value Observed Value 0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 < 0.0010 0.0450 0.030 17.5000 18.25 8.0000 12.0000 8.59 0.1000 0.061	Kr. No Element Min Value Max Value Observed Value 1 % C (Carbon) 0.0300 0.029 2 % Mn (Manganese) 2.0000 1.07 3 % SI (Silicon) 0.7500 0.244 4 % S (Sulphur) 0.0300 <0.0010 5 % P(Posphorous) 0.0450 0.0300 6 % Cr (Chromium) 17.5000 19.5000 18.25 7 % NI (Nickel) 8.0000 12.0000 8.59 8 % N (Nitrogen) 0.1000 0.061 emark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE Vel-UMS 30403 rdness Test : Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:07/07/2018 ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 R2 R3 RBW Surface B (Red) Ball 1/16 " 100 92.00 86.0 86.0 87.0	mark Tensile Test Conforms To ASHE See	tion II Part & SA 240-201		103	
1 % C (Carbon) 0.0300 2 % Mn (Manganese) 2.0000 3 % Si (Silicon) 0.7500 4 % S (Sulphur) 0.0300 5 % P (Phosphorous) 0.0450 6 % C (Chromium) 17.5000 7 % Ni (Nickel) 8.0000	0.0300 0.029 2.0000 1.07 0.7500 0.24 0.0300 < 0.0010 0.0450 0.030 17.5000 18.25 8.0000 12.0000 8.59 0.1000 0.061	1 % C (Carbon) 0.0300 0.029 2 % Mn (Manganese) 2.0000 1.07 3 % S1 (Silicon) 0.7500 0.24 4 % S (Sulphur) 0.0300 <0.0010 5 % P(Prosphorous) 0.0450 0.0300 6 % Cr (Chromium) 17.5000 19.5000 18.25 7 % NI (Nickel) 8.0000 12.0000 8.59 8 % N (Nitrogen) 0.1000 0.061 emark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE 0.1000 0.061 vick - L WKS SJ0403 rdssodd3 rdssodd3 rdstod7/07/2018 ype Identification Location ICacation II-A:SA 370: 2015 Testing Date:07/07/2018 ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 R2 R3 R8 R8 8.6.0 87.0	mark - rensile rest conforms to Asme sec	1011 11 Fait A 3A 240.201	7:TYPE 304L - UNS 5304	403	
2 % Mn (Manganese) 2.0000 3 % Si (Silicon) 0.7500 4 % S (Sulphur) 0.0300 5 % P (Phosphorous) 0.0450 6 % Cr (Chromium) 17.5000 7 % Ni (Nickel) 8.0000	2.0000 1.07 0.7500 0.24 0.0300 <0.0010	2 % Mn (Manganese) 2.0000 1.07 3 % Si (Silicon) 0.7500 0.24 4 % S (Sulphur) 0.0300 <0.0010			7:1YPE 304L - UNS 5304		ting Date:06/07/2018
3 % Si (Sillcon) 0.7500 4 % S (Sulphur) 0.0300 5 % P (Phosphorous) 0.0450 6 % C (Chromium) 17,5000 7 % Ni (Nickel) 8.0000	0.7500 0.24 0.0300 < 0.0010	3 % Si (Silicon) 0.7500 0.24 4 % S (Sulphur) 0.0300 <0.0010	emical Analysis : Test Method : ASTM E 108			Tes	
4 % S (Sulphur) 0.0300 5 % P (Phosphorous) 0.0450 6 % Cr (Chromium) 17.5000 19.5000 7 % NI (Nickel) 8.0000 12.0000	0.0300 < 0.0010 0.0450 0.030 17.5000 19.5000 8.0000 12.0000 0.1000 0.061	4 % \$ (Sulphur) 0.0300 < 0.0010	emical Analysis : Test Method : ASTM E 108 Sr.No Element			Tes Max Value	Observed Value
5 % P (Phosphorous) 0.0450 6 % Cr (Chromium) 17.5000 19.5000 7 % NI (Nickel) 8.0000 12.0000	0.0450 0.030 17.5000 19.5000 18.25 8.0000 12.0000 8.59 0.1000 0.061	5 % P (Phosphorous) 0.0450 0.030 6 % Cr (Chromium) 17.5000 19.5000 18.25 7 % NI (Nickel) 8.0000 12.0000 8.59 8 % NI (Nitrogen) 0.1000 0.061 mark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE 0.1000 0.061 04L - UNS \$30403 Tresting Date:07/07/2018 Testing Date:07/07/2018 ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 R2 R3 RBW Surface B (Red) Ball 1/16 * 100 92.00 86.0 87.0	emical Analysis : Test Method : ASTM E 108 5r.No Element 1 % C (Carbon) 2 % Mn (Manganese)			Tes Max Value 0.0300 2.0000	Observed Value 0.029 1.07
6 % Cr (Chromium) 17.5000 19.5000 7 % Ni (Nickel) 8.0000 12.0000	17.5000 19.5000 18.25 8.0000 12.0000 8.59 0.1000 0.061	6 % Cr (Chromium) 17.5000 19.5000 18.25 7 % NI (Nickel) 8.0000 12.0000 8.59 8 % NI (Nitrogen) 0.1000 0.061 emark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE 0.1000 0.061 ut - UMS 50403 rdness Test : Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:07/07/2018 ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 R2 R3 RBW Surface B (Red) Ball 1/16 " 100 92.00 86.0 86.0 87.0	emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % Si (Silicon)			Tes Max Value 0.0300 2.0000 0.7500	Observed Value 0.029 1.07 0.24
7 % Ni (Nickel) 8.0000 12.0000	8.0000 12.0000 8.59 0.1000 0.061	7 % NI (Nickel) 8.0000 12.0000 8.59 8 % N (Nitrogen) 0.1000 0.061 emark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE 20000 0.000 0.1.000 0.000 0.001 0.000 0.001 0.1.000 0.001 0.000 0.001 emark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE 2000 2000 del UNS 350403	emical Analysis : Test Method : ASTM E 108 5r.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % Si (Silicon) 4 % S (Sulphur)			Tes Max Value 0.0300 2.0000 0.7500 0.0300	Observed Value 0.029 1.07 0.24 < 0.0010
	0.1000 0.061	8 % N (Niltrogen) 0.1000 0.061 emark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE 5 5 5 5 5 5 7	emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % Si (Silicon) 4 % S (Sulphur) 5 % P (Phosphorous)		Min Value	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450	Observed Value 0.029 1.07 0.24 < 0.0010
8 % N (Nitrogen) 0.1000		emark - Chemical Analysis by Spectro Method Conforms To ASME Section II Part A SA 240:2017:TYPE O4L - UNS \$30403 Testing Date:07/07/2018 Testing Date:07/07/2018 ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 R2 R3 RBW ··· Surface B (Red) Ball 1/16 * 100	emical Analysis : Test Method : ASTM E 108 5r.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % Si (Sillcon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium)		Min Value 17.5000	Tes <u>Max Value</u> 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000	Observed Value 0.029 1.07 0.24 < 0.0010
		UPUEL - UNS \$30403 Testing Date:07/07/2018 Testing Date:07/07/2018 ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 RBW ··· Surface B (Red) Ball 1/16 ° 100 92.00 86.0 87.0	emical Analysis : Test Method : ASTM E 108 5r.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % S (Sillcon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel)		Min Value 17.5000	Tes <u>Max Value</u> 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 12.0000	Observed Value 0.029 1.07 0.24 < 0.0010 0.030 18.25 8.59
		ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 R2 R3 RBW Surface B (Red) Ball 1/16 * 100 92.00 86.0 86.0 87.0	emical Analysis : Test Method : ASTM E 108 5r.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % Si (Silcon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen)	86 : 2014	Min Value 17.5000 8.0000	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 12.0000 0.1000	Observed Value 0.029 1.07 0.24 < 0.0010 0.030 18.25 8.59
rdness Test : Test Method : ASME Section II-A:SA 370 : 2015 Testing Date:0	E Section II-A:SA 370 : 2015 Testing Date:07/07/2018	RBW Surface B (Red) Ball 1/16 " 100 92.00 86.0 86.0 87.0	emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Silicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % NI (Nickel) 8 % N (Nitrogen) smark - Chemical Analysis by Spectro Metho	86 : 2014	Min Value 17.5000 8.0000	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 12.0000 0.1000	Observed Value 0.029 1.07 0.24 < 0.0010 0.030 18.25 8.59
ype Identification Location Scale Indentor Ball Dia Load(Kg) Min Max R1 R2			emical Analysis : Test Method : ASTM E 108 Sr. No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % Si (Silicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % NI (Nickel) 8 % N (Nitrogen) mark - Chemical Analysis by Spectro Metho 94L - UNS \$30403	86 : 2014 od Conforms To ASME Sec	Min Value 17.5000 8.0000	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 12.0000 0.1000 017:TYPE	Observed Value 0.029 1.07 0.24 < 0.0010
RBW Surface B (Red) Ball 1/16 " 100 92.00 86.0 86.0	ocation Scale Indentor Ball Dia Load(Kg) Min Max R1 R2 R3	emark - Hardness Test Conforms To ASME Section II Part A SA 240:2017:TYPE 304L - UNS S30403	emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Silicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) smark - Chemical Analysis by Spectro Methode ML - UNK 530403 rdraess Test : Test Method : ASME Section II	86 : 2014 od Conforms To ASME Sec I-A:SA 370 : 2015	Min Value 17.5000 8.0000 tion II Part A SA 240:20	Tes <u>Max Value</u> 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 19.5000 19.5000 0.1000 0.1000 D17:TYPE Tes	Observed Value 0.029 1.07 0.24 <0.0010
amark - Hardness Test Conforms To ASME Section II Part & S& 240:2017:TVPE 3041 - LINS \$30403			emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % S (Silcon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) semark - Chemical Analysis by Spectro Methi VAL - UNK S30403 rdness Test : Test Method : ASME Section II ype Identification Location S	od Conforms To ASME Sec I-A:SA 370 : 2015 cale Indentor, Ball Di	Min Value 17.5000 8.0000 tion II Part A SA 240;20 a Load(Kg) Min	Tes <u>Max Value</u> 0.0300 2.0000 0.0300 0.0450 19.5000 12.0000 0.1000 0.1000 0.1000 0.17:TYPE Tes <u>Max</u> R1	Observed Value 0.029 1.07 0.24 < 0.0010
	urface B (Red) Ball 1/16" 100 92.00 86.0 86.0 87.0		emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Sillicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) mmark - Chemical Analysis by Spectro Methold UNS \$30403 rdmess Test : Test Method : ASME Section II ype Identification Location S RBW ··· Surface B	od Conforms To ASME Sec -A:SA 370 : 2015 cale Indentor, Ball Di (Red) Ball 1/16 ⁻	Min Value 17.5000 8.0000 tion II Part A SA 240:20 a Load(Kg) Min 100	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 0.1000 0.1000 0.17:TYPE Tes Max R1 92.00 86.0	Observed Value 0.029 1.07 0.24 < 0.0010
	urface B (Red) Ball 1/16" 100 92.00 86.0 86.0 87.0		emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Sillicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) mmark - Chemical Analysis by Spectro Methold UNS \$30403 rdmess Test : Test Method : ASME Section II ype Identification Location S RBW ··· Surface B	od Conforms To ASME Sec -A:SA 370 : 2015 cale Indentor, Ball Di (Red) Ball 1/16 ⁻	Min Value 17.5000 8.0000 tion II Part A SA 240:20 a Load(Kg) Min 100	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 0.1000 0.1000 0.17:TYPE Tes Max R1 92.00 86.0	Observed Value 0.029 1.07 0.24 < 0.0010
			emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Silicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) smark - Chemical Analysis by Spectro Methode ML - UNK 530403 rdraess Test : Test Method : ASME Section II	86 : 2014 od Conforms To ASME Sec I-A:SA 370 : 2015	Min Value 17.5000 8.0000 tion II Part A SA 240:20	Tes <u>Max Value</u> 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 19.5000 19.5000 0.1000 0.1000 D17:TYPE Tes	Observed Value 0.029 1.07 0.24 <0.0010
			emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % S (Silcon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) semark - Chemical Analysis by Spectro Methi VAL - UNK S30403 rdness Test : Test Method : ASME Section II ype Identification Location S	od Conforms To ASME Sec I-A:SA 370 : 2015 cale Indentor, Ball Di	Min Value 17.5000 8.0000 tion II Part A SA 240;20 a Load(Kg) Min	Tes <u>Max Value</u> 0.0300 2.0000 0.0300 0.0450 19.5000 12.0000 0.1000 0.1000 0.1000 0.17:TYPE Tes <u>Max</u> R1	Observed Value 0.029 1.07 0.24 < 0.0010
	urface B (Red) Ball 1/16" 100 92.00 86.0 86.0 87.0		emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Sillicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) mmark - Chemical Analysis by Spectro Methold UNS \$30403 rdmess Test : Test Method : ASME Section II ype Identification Location S RBW ··· Surface B	od Conforms To ASME Sec -A:SA 370 : 2015 cale Indentor, Ball Di (Red) Ball 1/16 ⁻	Min Value 17.5000 8.0000 tion II Part A SA 240:20 a Load(Kg) Min 100	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 0.1000 0.1000 0.17:TYPE Tes Max R1 92.00 86.0	Observed Value 0.029 1.07 0.24 < 0.0010
Remark - Hardness resc contorns to Asme section in Parch SA 240.2017.11PE 504E - 013 550405	urface B (Red) Ball 1/16 " 100 92.00 86.0 86.0 87.0		emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Sillicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) mmark - Chemical Analysis by Spectro Methold UNS \$30403 rdmess Test : Test Method : ASME Section II ype Identification Location S RBW ··· Surface B	od Conforms To ASME Sec -A:SA 370 : 2015 cale Indentor, Ball Di (Red) Ball 1/16 ⁻	Min Value 17.5000 8.0000 tion II Part A SA 240:20 a Load(Kg) Min 100	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 0.1000 0.1000 0.17:TYPE Tes Max R1 92.00 86.0	Observed Value 0.029 1.07 0.24 0.010 0.030 18.25 8.59 0.061 ting Date:07/07/2018 R2 R3
	urface B (Red) Ball 1/16" 100 92.00 86.0 86.0 87.0		emical Analysis : Test Method : ASTM E 108 Sr.No Element 1 % C (Carbon) 2 % Mn (Manganese) 3 % SI (Sillicon) 4 % S (Sulphur) 5 % P (Phosphorous) 6 % Cr (Chromium) 7 % Ni (Nickel) 8 % N (Nitrogen) mmark - Chemical Analysis by Spectro Methold UNS \$30403 rdmess Test : Test Method : ASME Section II ype Identification Location S RBW ··· Surface B	od Conforms To ASME Sec -A:SA 370 : 2015 cale Indentor, Ball Di (Red) Ball 1/16 ⁻	Min Value 17.5000 8.0000 tion II Part A SA 240:20 a Load(Kg) Min 100	Tes Max Value 0.0300 2.0000 0.7500 0.0300 0.0450 19.5000 0.1000 0.1000 0.17:TYPE Tes Max R1 92.00 86.0	Observed Value 0.02/ 1.01 0.22 < 0.0011

 $\underline{\mathbf{F}}$ rom testing reports it seems that material used for fabrication is as per requirement, so crack is not due to wrong material.

As above scenario satisfies the requirement then next step will be verification of Cyclone worst condition scenario for crack propagation.

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

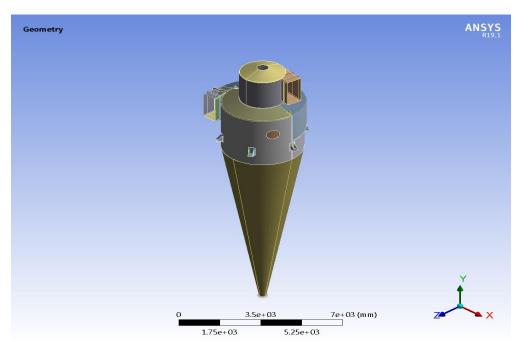
V.FEM ANALYSIS

We Myself and our Global design team has collected date for worst scenario for CFD as well as FEM analysis.

Reference documents.

Regulations, Codes and Standards

No.	Document No.	Title
1	EN13445 PART-2	Design and Manufacturing Code
2	ASME SEC-II PART-D,2015	Materials (for yield strength and tensile stress values).

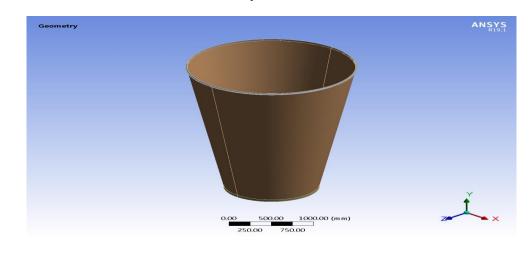

Design Parameters

- 1. Design Pressure (External and Internal) as per requirements.
- 2. Design Temperature as per requirements.
- 3. Pressure drops.
- 4. Material of construction.

Cyclone Model

Drawing No.- XXXXXXXXXX

Model of Cyclone


| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

Model of Cyclone Insert Cone

Component Name	Material	Young Modulus (MPa)	Poisson's Ratio	Allowable Stress (*S)(MPa)
Insert cone assembly	SS 304L	187.8 X 10 ³	0.3	115

*S: Allowable Stress of material at design temperature.

Acceptance Criteria

	Stress Categories						
		Primary stress		Secondary			
	General membrane stress	Local membrane stress	Bending stress	membrane + bending stress	Peak stress		
Description (For practical examples, see Table C-2)	Primary mean stress calculated across the wall thickness without taking into account discontinuities and stress concentrations. Caused only by mechanical loads.	Primary mean stress calculated across the wall thickness taking into account large discontinuities, but not stress concentrations. Caused only by mechanical loads.	Primary stress component proportional to the distance from the centroid of the solid wall section. Doe will section. Doe on the section and stress concentrations. Caused only by mechanical loads	Self-equilibrating stress necessary to satisfy the continuity of the structure. Occurs at large discontinuities, but does not include stress concentrations. Can be caused by both mechanical loads and thermal effects.	 a) Addition to primary or secondary stress because of stress concentration. b) Certain thermal stresses which may cause fatigue, but not distortion. 		
Symbol	Pm	PL ¹⁾	Pb	$(= Q_m + Q_b)$	F		
assessment againts static loading	$(\sigma_{eq})_{P_{a}} \leq f$ $(oq. C.7.2-1)$ $(\sigma_{eq})_{P_{a}} \leq 1.5f$ $(oq. C.7.2-2)$ $(a_{eq})_{P_{a}} \leq 1.5f$ $(a_{eq})_{P_{a}} \leq 3.f$ $(a_{eq})_{P_{a}} \leq 1.5.f$ $(a_{eq})_{P_{a}} < 1.5.f$ $(a_{eq})_{P_{a}$						
fatigue assessment (only if required)	Assessment ⁴⁾ based on : 7 $rac{(\Delta \sigma_{eq})P+Q}{max (\Delta \sigma_{p})}$ or $rac{(\Delta \sigma_{eq})P+Q+F}{(\Delta \sigma_{eq})P+Q+F}$						
¹⁾ $P_{L} = P_{m}$ does not occur at the point in question. ²⁾ In assessment criteria given in equations (C.7.2-1) to (C.7.2-3), the value of the nominal design stress <i>f</i> shall be that relevant for the loading condition under consideration (normal operation, exceptional operation, proof test), as defined in clause 6. ³⁾ If ($\Delta \sigma_{eq}$)P+Q is greater than 3 <i>f</i> , see C.7.6							
relevant stre fatigue asse ^의 The primary	⁵ Failgue assessment shall consider all the applied cycles of various types, each of them being characterised by their own relevant stress range (see footnotes 5 and 6), mean temperature and mean stress (if relevant). Clause 18 (detailed fatigue assessment) should normally be used. ⁶ The primary + secondary stress range (named "structural stress range" in clause 18 on detailed fatigue assessment)						
principal stre	ess range max($\Delta \sigma_i$) m	ay be used.		ess range (∆σ _{eq})P+Q or th			
assessment	, applies to assessme	nt of unwelded parts.		nge" in clause 18 on detaile			
⁵ It should be observed that, depending on the model used, the computer programs usually give directly the primary + secondary stresses (P + 0) or the primary + secondary + peak stresses (P + 0 + 7).							

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

Meshing

All the components have been meshed with SOLID186 elements. SOLID186 is used for the three-dimensional modelling of solid structures. The element is defined by eight nodes having three degrees of freedom at each node: translations in the nodal x, y, and z directions. The element has plasticity, stress stiffening, large deflection, and large strain capabilities.

SOLID186 Homogeneous Structural Solid is well suited to modeling irregular meshes (such as those produced by various CAD/CAM systems). The element may have any spatial orientation. It can be adjust itself in the required shape (Tetrahedral, pyramidal, prism etc.) depend upon the complex geometry of the part. Representation of solid 186 element with different shapes is given below in Fig.

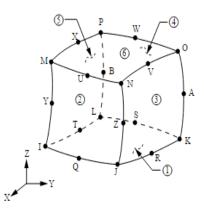
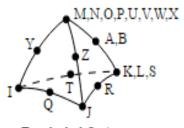
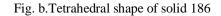




Fig. a.General representation of solid 186

Tetrahedral Option

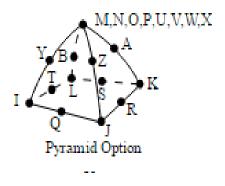


Fig. c. Pyramidal shape of solid 186

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

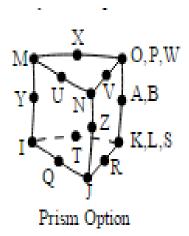
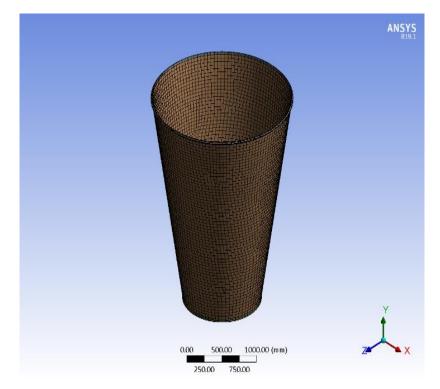



Fig. d. Prism shape of solid 186

Element Type Used: I) Tetrahedral Shape of Solid 186 II) Hexahedral Shape of Solid 186 Total No of Nodes = 52595 Total No of Elements = 9063

Meshing of model

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

Equivalent Stress = 154.51 MPa (Max)

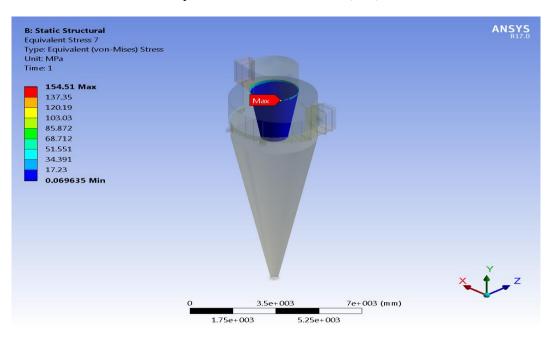
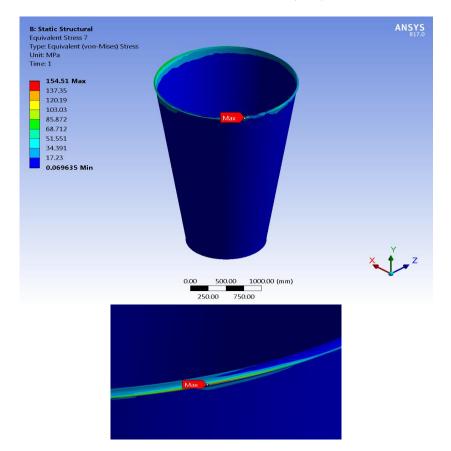
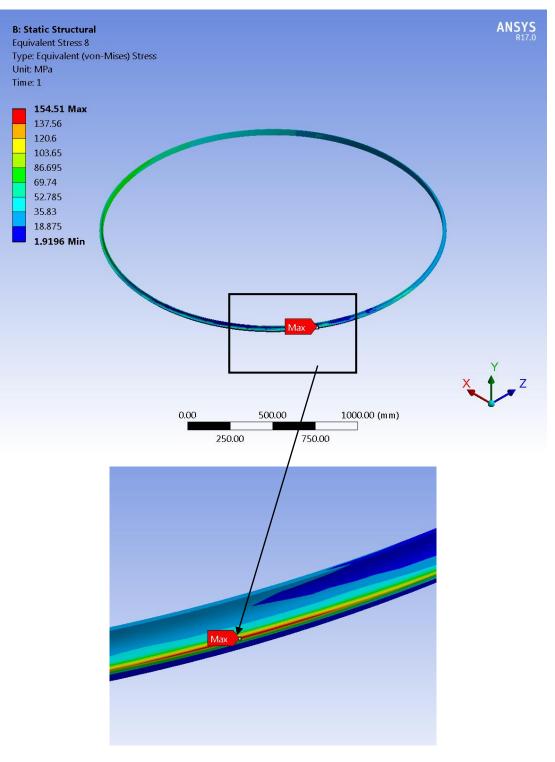



Figure 1 Equivalent stress.

Total Deformation = 3.07 mm (Max)


| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

• Equivalent Stress on Inert cone Ring = 154.51 MPa (Max)

Equivalent stress

UMRSET

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

Linearized Equivalent stress.

Result-					
Classification	Material	Allowable Limit	Allowable Stress (MPa)	Actual Stress (MPa)	Remarks
P _M	SS 304L	1.0 * S	115	19.94	SAFE
$P_M + P_B$	SS 304L	1.5 * S	172.5	36.61	SAFE

Refer, - Acceptance Criteria for allowable stress limit.

• Equivalent Stress on Cone Shell = 60.69 MPa (Max)

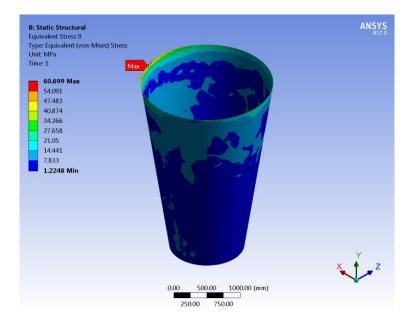


Figure5 Equivalent stress.

Result-

Classification	Material	Allowable Limit	Allowable Stress (MPa)	Actual Stress (MPa)	Remarks
P _M	SS 304L	1.0 * S	115	60.69	SAFE

Result-

Classification	Material	Remarks
Insert Cone Ring	SS 304L	SAFE
Insert Cone Shell	SS 304L	SAFE

Fatigue Life Calculations

Given Condition for Operating condition is, Pvacuum = mmWG @ $T=^{\circ}C$ Pressure fluctuation level, $\Delta p = mmWG$

From above we have plotted a different value for input pressure and applied on faces for determining the life of insert cone.

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.521 | Monthly Peer Reviewed & Referred Journal |

| Volume 7, Issue 4, April 2024 |

| DOI:10.15680/IJMRSET.2024.0704096 |

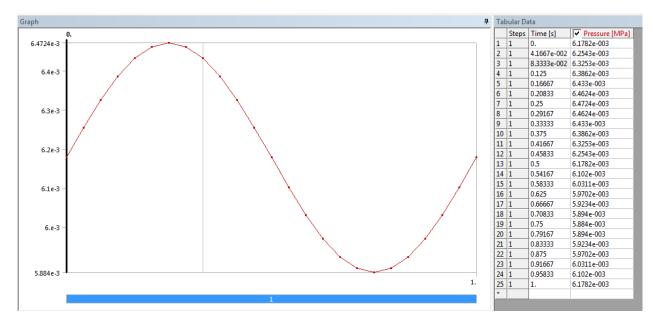


Figure 62 Fluctuation pressure graph and respective values.

The analysis is carried out and fatigue life is determined.

VI. CONCLUSION

- 1. From above results, it is observed that all the induced stresses are within respective code limits mentioned above.
- 2. So, it Crack might be observed due to sudden shock in process and it seems from discussion there was a trigger of explosion sensors which witness the shock pressure which might be reason for crack propagation.
- 3. To safeguard the design on these kinds of unknown parameters; Separator's are made with stronger at certain critical areas.
- 4. Similar changes have been done and from last couple of months it has been observed the component is running smoother without any further cracks.
- 5. This Cyclone Insert cone is safe for specified boundary conditions.

REFERENCES

[1]. M.Perl, A. Nachum,"3-D stress intensity factors for internal cracks in an overstrained cylindrical pressure vesselpart II: the combined effect of pressure andautofrettage" Journal of Pressure Vessel Technology, Vol.123/135, 2001.

[2]. J.A. Wang, K.C. Liu,"A new approach to evaluate fracture toughness of structural materials", Transactions of the ASME,534/vol.126,2004

[3]. S. Stoychev, D. Kujawski," Crack tip stresses and their effect on stress intensity factor for crack propagation", Engineering Fracture Mechanics 75, 2007.

[4]. Ma Youli," Evaluating stress distributions and stress intensity factors of a crack under mixed-mode conditions in aluminum alloy", International Conference on Measuring Technology and Mechatronics Automation, 2010

[5]. Spray Drying Handbook Vol.60 Keith Masters.

[6] European Standard EN13445 PART-2 Design and Manufacturing Code.

[7] SPX Anhydro Procedures.

[8] EHEDG_DOC.9 Welding stainless steel to meet hygienic requirements, September 1993.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |

www.ijmrset.com