| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54|
| Volume 6, Issue 5, May 2023 |
| DOI:10.15680/IJMRSET.2023.0605051|

Mean Cordial Labeling Of Some Graphs

Ansari Saima ${ }^{1}$, Ansari Shakeel ${ }^{1}$
Assistant Professor, Maharashtra College, Mumbai, Maharashtra, India ${ }^{1}$

Abstract

Let f be a function from $V(G)$ to $\{0,1,2\}$. For every edge $u v$ nominate the label $\{0,1,2\}$. f is called a mean cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, \forall i, j \in\{0,1,2\}$ where $v_{f}(x)$ and $e_{f}(x)$ represent the number of vertices and edges respectively labeled with $x(x=0,1,2)$. A graph with mean cordial labeling is called a mean cordial graph. In this chapter we study the mean cordial labeling pattern of ladder graph L_{n} and shadow graph of $K_{1, n}$.

KEYWORDS: mean cordial labeling, ladder graph, shadow graph.

I. INTRODUCTION

The graphs under consideration are simple, finite, and undirected. $V(G)$ and $E(G)$ represent the set of vertices and set of edges of a graph G, respectively. The number of elements of $V(G)$ and $E(G)$ is called the order and size of Grespectively. Tracking system, route design, broadband networks, astrographs, and coding-encoding are just a few of the fields where labeled graphs are used(Gallian, 2022). Cahit introduced the cordial labeling concept in 1987(Cahit, 1987).

Definition 1: Let $f: V(G) \rightarrow\{0,1\}$ be a mapping. For every edge uvnominate the label $|f(u)-f(v)| . f$ is called a cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, \forall i, j \in\{0,1\}$ where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and edges respectively labelled with $x(x=0,1)$. A graph that admits a cordial labeling is called a cordial graph(Cahit, 1987).

Definition 2: Let $f: V(G) \rightarrow\{0,1,2\}$ be a function. For each edge $u v$ assign the label $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \cdot f$ is called a mean cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, \forall i, j \in\{0,1,2\}$ where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and edges respectively labeled with $x(x=0,1,2)$. A graph that admits a mean cordial labeling is called a mean cordial graph(Ponraj et al., 2012).

If we reduce the range set of f to $\{0,1\}$ then this definition becomes the definition of product cordial labeling.M. Sundaram, R. Ponraj, and Somasundaram established the concept of cordial product labelling(Sundaram et al., 2004).

I examine the mean cordial labeling pattern of lattice graphs. The sign $\lfloor x\rfloor$ represents greatest integer less than or equal to x and $\lceil x\rceil$ represents smallest integer greater than or equal to x. Terminologies not described here are used in Harary's context(Book 1 (Harary).Pdf, n.d.).

Definition 3: A cartesian product of two graphs G and H is the graph $G \times H$ such that its vertex set is a Cartesian product of $V(G)$ and $V(H)$ i.e. $V(G \times H)=V(G) \times V(H)=\{(x, y): x \in V(G), y \in V(H)\}$ and its edge set is
| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54|
| Volume 6, Issue 5, May 2023 |
| DOI:10.15680/IJMRSET.2023.0605051|
defined as $E(G \times H)=\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right): x_{1}=y_{1}\right.$ and $\left(x_{2}, y_{2}\right) \in \mathrm{E}(\mathrm{H})$ or $x_{2}=y_{2}$ and $\left.\left(x_{1}, y_{1}\right) \in E(G)\right\}($ "Cartesian Product of Graphs," 2022).

Definition 4:The ladder graph L_{n} is defined as the cartesian product of P_{n} by K_{2} where P_{n} is a path with n vertices and K_{2} is a complete graph with two vertices. Here $V_{L n}=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E_{L n}=\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq n-\right.$ $1\} \cup\left\{f_{i}=u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{g_{i}=v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$.(Sumathi, 2018)

Figure 1: L_{4}
Definition 5: The shadow graph $D_{2}(G)$ of a connected graph G is constructed by taking two copies of G say G^{\prime} and $G^{\prime \prime}$. Join each vertex u^{\prime} in G^{\prime} to the neighbours of the corresponding vertex v^{\prime} in $G^{\prime \prime}$.(Jayasekaran, 2018).

Figure 2: Shadow graph of $K_{1,5}$
Definition 6: Let f be a function from $V(G)$ to $\{0,1,2\}$. For each edge $u v$ of G, assign the label $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$ or $\left.\left\lvert\, \frac{f(u)+f(v)}{2}\right.\right] . f$ is called a mean cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, \forall i, j \in\{0,1,2\}$ where $v_{f}(x)$ and $e_{f}(x)$ represent the number of vertices and edges respectively labeled as $x(x=0,1,2)$. An illustration using mean cordial labeling is referred to as a mean cordial graph.

MAIN RESULTS:

Theorem 1: Let L_{n} be a ladder graph, then L_{n} admits mean cordial labeling.
Proof. Define $f: V(G) \rightarrow\{0,1,2\}$ and $g: E(G) \rightarrow\{0,1,2\}$.
Case $(\mathbf{i}): n \equiv 0(\bmod 3):$ That is, $n=3 k$, where k is positive integer.
| Volume 6, Issue 5, May 2023 |
| DOI:10.15680/IJMRSET.2023.0605051|
We define vertex labeling as follows: $f\left(u_{i}\right)=f\left(v_{i}\right)=\left\{\begin{array}{c}2 \begin{array}{c}1 \leq \mathrm{i} \leq \mathrm{k} \\ 1\end{array} \begin{array}{c}\mathrm{k}+1 \leq \mathrm{i} \leq 2 \mathrm{k} \\ 0\end{array} \quad 2 \mathrm{k}+1 \leq \mathrm{i} \leq 3 \mathrm{k} .\end{array}\right.$
We define edge labeling as follows:
$g\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{f\left(u_{i}\right)+f\left(u_{i+1}\right)}{2}\right\rfloor \quad 1 \leq i \leq 3 k-1$,
$g\left(v_{i} v_{i+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+1}\right)}{2}\right\rceil \quad 1 \leq i \leq 3 k-1 \quad$ and
$g\left(u_{i} v_{i}\right)=\left\lceil\frac{f\left(u_{i}\right)+f\left(v_{i}\right)}{2}\right\rceil \quad 1 \leq i \leq 3 k$.
In this case, we have $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 k$, and
$e_{g}(0)=e_{g}(2)=3 k-1, e_{g}(1)=3 k$.

Case(ii) $: n \equiv 1(\bmod 3):$ That is, $n=3 k+1$, where k is positive integer.

$f\left(u_{3 k+1}\right)=1 ; f\left(v_{3 k+1}\right)=2$
We define edge labeling as follows:
$g\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{f\left(u_{i}\right)+f\left(u_{i+1}\right)}{2}\right\rfloor 1 \leq i \leq 3 k$,
$g\left(v_{i} v_{i+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+1}\right)}{2}\right\rceil 1 \leq i \leq 3 k \quad$ and
$g\left(u_{i} v_{i}\right)=\left\lceil\frac{f\left(u_{i}\right)+f\left(v_{i}\right)}{2}\right\rceil 1 \leq i \leq 3 k+1$.
In this case, we have $v_{f}(0)=2 k, v_{f}(1)=v_{f}(2)=2 k+1$, and
$e_{g}(0)=e_{g}(2)=3 k, e_{g}(1)=3 k+1$.
Case(iii) $: n \equiv 2(\bmod 3):$ That is, $n=3 k+2$, where k is positive integer.
We define vertex labeling as follows: $f\left(u_{i}\right)=f\left(v_{i}\right)=\left\{\begin{array}{cc}2 & 1 \leq \mathrm{i} \leq \mathrm{k} . \\ 1 & \mathrm{k}+1 \leq \mathrm{i} \leq 2 \mathrm{k} \\ 0 & 2 \mathrm{k}+1 \leq \mathrm{i} \leq 3 \mathrm{k}\end{array}\right.$
$f\left(u_{3 k+1}\right)=1 ; f\left(v_{3 k+1}\right)=2$
$f\left(u_{3 k+2}\right)=0 ; f\left(v_{3 k+2}\right)=2$
| Volume 6, Issue 5, May 2023 |
| DOI:10.15680/IJMRSET.2023.0605051|
We define edge labeling as follows:
$g\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{f\left(u_{i}\right)+f\left(u_{i+1}\right)}{2}\right\rfloor 1 \leq i \leq 3 k+1$,
$g\left(v_{i} v_{i+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+1}\right)}{2}\right\rceil 1 \leq i \leq 3 k+1 \quad$ and
$g\left(u_{i} v_{i}\right)=\left\lceil\frac{f\left(u_{i}\right)+f\left(v_{i}\right)}{2}\right\rceil 1 \leq i \leq 3 k+2$.
In this case, we have $v_{f}(0)=v_{f}(1)=2 k+1, v_{f}(2)=2 k+2$, and
$e_{g}(0)=e_{g}(2)=3 k+1, e_{g}(1)=3 k+2$.
In all the above cases the conditions, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{g}(i)-e_{g}(j)\right| \leq 1, \forall i, j \in\{0,1,2\}$, are satisfied by the labeling pattern.

Example 1. Figure 3 represents the mean cordial labeling of ladder graph L_{5}.
This is the caseinvolving $n \equiv 2(\bmod 3)$.

Figure3: Ladder graph L_{5}
Theorem 2: Let $D_{2}\left(K_{1, n}\right)$ be a shadow graph of $K_{1, n}$, then $D_{2}\left(K_{1, n}\right)$ admits mean cordial labeling.
Proof: Define $f: V(G) \rightarrow\{0,1,2\}$ and $g: E(G) \rightarrow\{0,1,2\}$.
Case($\mathbf{i}): n \equiv 0(\bmod 3):$ That is, $n=3 k$, where k is positive integer.
We define vertex labelling as follows.

$$
\begin{gathered}
f(u)=0, f(v)=2 \\
f\left(u_{i}\right)=f\left(v_{i}\right)=\left\{\begin{array}{cc}
2 & 1 \leq \mathrm{i} \leq \mathrm{k} \\
1 & \mathrm{k}+1 \leq \mathrm{i} \leq 2 \mathrm{k} \\
0 & 2 \mathrm{k}+1 \leq \mathrm{i} \leq 3 \mathrm{k}
\end{array}\right.
\end{gathered}
$$

We define edge labeling as follows:
$g\left(u u_{i}\right)=\left\lfloor\frac{f(u)+f\left(u_{i}\right)}{2}\right\rfloor \quad 1 \leq i \leq 3 k$,
| Volume 6, Issue 5, May 2023 |
| DOI:10.15680/IJMRSET.2023.0605051|

$$
g\left(v v_{i}\right)=\left\lceil\frac{f(v)+f\left(v_{i}\right)}{2}\right\rceil \quad 1 \leq i \leq 3 k
$$

$g\left(u v_{i}\right)=\left\lfloor\frac{f(u)+f\left(v_{i}\right)}{2}\right\rfloor$
$1 \leq i \leq 3 k$ and
$g\left(v u_{i}\right)=\left\lceil\frac{f(v)+f\left(u_{i}\right)}{2}\right\rceil$ $1 \leq i \leq 3 k$

In this case, we have, $v_{f}(0)=v_{f}(2)=2 k+1, v_{f}(1)=2 k$, and

$$
e_{g}(0)=e_{g}(1)=e_{g}(2)=4 k
$$

Case(ii) $: n \equiv 1(\bmod 3):$ That is, $n=3 k+1$, where k is positive integer.
We define vertex labeling as follows:

$$
\begin{gathered}
f(u)=0, f(v)=2 \\
f\left(u_{i}\right)=f\left(v_{i}\right)=\left\{\begin{array}{cc}
2 & 1 \leq \mathrm{i} \leq \mathrm{k} \\
1 & \mathrm{k}+1 \leq \mathrm{i} \leq 2 \mathrm{k} \\
0 & 2 \mathrm{k}+1 \leq \mathrm{i} \leq 3 \mathrm{k}
\end{array}\right.
\end{gathered}
$$

$f\left(u_{3 k+1}\right)=2 ; f\left(v_{3 k+1}\right)=1$
We define edge labeling as follows:
$g\left(u u_{i}\right)=\left\lfloor\frac{f(u)+f\left(u_{i}\right)}{2}\right\rfloor \quad 1 \leq i \leq 3 k+1$,

$$
g\left(v v_{i}\right)=\left\lceil\frac{f(v)+f\left(v_{i}\right)}{2}\right\rceil \quad 1 \leq i \leq 3 k+1
$$

$g\left(u v_{i}\right)=\left\lfloor\frac{f(u)+f\left(v_{i}\right)}{2}\right\rfloor \quad 1 \leq i \leq 3 k+1$ and
$g\left(v u_{i}\right)=\left\lceil\frac{f(v)+f\left(u_{i}\right)}{2}\right\rceil \quad 1 \leq i \leq 3 k+1$
In this case, we have, $v_{f}(0)=v_{f}(1)=2 k+1, v_{f}(2)=2 k+2$, and

$$
e_{g}(0)=e_{g}(1)=4 k+1, e_{g}(2)=4 k+2
$$

Case(iii) $: n \equiv 2(\bmod 3):$ That is, $n=3 k+2$, where k is positive integer.
We define vertex labeling as follows:

$$
\begin{gathered}
f(u)=0, f(v)=2 \\
f\left(u_{i}\right)=f\left(v_{i}\right)=\left\{\begin{array}{cc}
2 \quad 1 \leq \mathrm{i} \leq \mathrm{k} \\
1 & \mathrm{k}+1 \leq \mathrm{i} \leq 2 \mathrm{k} \\
0 & 2 \mathrm{k}+1 \leq \mathrm{i} \leq 3 \mathrm{k}
\end{array}\right.
\end{gathered}
$$

$f\left(u_{3 k+1}\right)=1 ; f\left(v_{3 k+1}\right)=2$
| Volume 6, Issue 5, May 2023|
| DOI:10.15680/IJMRSET.2023.0605051|
$f\left(u_{3 k+2}\right)=1 ; f\left(v_{3 k+2}\right)=0$
We define edge labeling as follows:
$g\left(u u_{i}\right)=\left\lfloor\frac{f(u)+f\left(u_{i}\right)}{2}\right\rfloor \quad 1 \leq i \leq 3 k+2$,

$$
g\left(v v_{i}\right)=\left\lceil\frac{f(v)+f\left(v_{i}\right)}{2}\right\rceil \quad 1 \leq i \leq 3 k+2
$$

$g\left(u v_{i}\right)=\left\lfloor\frac{f(u)+f\left(v_{i}\right)}{2}\right\rfloor \quad 1 \leq i \leq 3 k+2$ and
$g\left(v u_{i}\right)=\left\lceil\frac{f(v)+f\left(u_{i}\right)}{2}\right\rceil \quad 1 \leq i \leq 3 k+2$
In this case, we have, $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 k+2$, and

$$
e_{g}(0)=e_{g}(2)=4 k+3, e_{g}(1)=4 k+2
$$

In all above cases the conditions,
In all the above cases the conditions, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{g}(i)-e_{g}(j)\right| \leq 1, \forall i, j \in\{0,1,2\}$, are satisfied by the labeling pattern.

Example 1. Figure 4 represents the mean cordial labeling of the graph $D_{2}\left(K_{1,5}\right)$.
This is the caseinvolving $n \equiv 2(\bmod 3)$.

Figure 4: Shadow graph $D_{2}\left(K_{1,5}\right)$
| Volume 6, Issue 5, May 2023 |
| DOI:10.15680/IJMRSET.2023.0605051|

REFERENCES

1. Book 1 (Harary).pdf. (n.d.). Retrieved May 19, 2023, from https://users.metu.edu.tr/aldoks/341/Book\ 1\ (Harary).pdf
2. Cahit, I. (1987). Cordial graphs: A weaker version of graceful and harmonious graphs. https://www.academia.edu/850965/Cordial_graphs_a_weaker_version_of_graceful_and_harmonious_graphs
3. Jayasekaran. (2018). EDGE TRIMAGIC TOTAL LABELINGS OF SOME SHADOW AND SPLITTING GRAPHS. International Journal of Pure and Applied Mathematics, 303-313.
4. Sumathi. (2018). Quotient labeling of some ladder graphs. American Journal of Engineering Research, 38-42.
5. Cartesian product of graphs. (2022). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Cartesian_product_of_graphs\&oldid=1106268233
6. Gallian, J. A. (2022). A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 1000, DS6: Dec 2. https://doi.org/10.37236/11668
7. Ponraj, R., Sivakumar, M., \& Sundaram, M. (2012). Mean cordial labeling of graphs. Open Journal of Discrete Mathematics, 2(4), 145.
8. Sundaram, M., Ponraj, R., \& Somasundaram, S. (2004). Product cordial labeling of graphs. Bulletin of Pure and Applied Sciences, 23E, 155-163.
