UMRSE

| ISSN: 2582-7219 | <u>www.ijmrset.com</u> | Impact Factor: 7.54

Volume 6, Issue 5, May 2023

| DOI:10.15680/IJMRSET.2023.0605051|

Mean Cordial Labeling Of Some Graphs

Ansari Saima¹, Ansari Shakeel¹

Assistant Professor, Maharashtra College, Mumbai, Maharashtra, India¹

ABSTRACT: Let f be a function from V(G) to $\{0,1,2\}$. For every edge uv nominate the label $\{0,1,2\}$. f is called a mean cordial labeling if $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $\forall i, j \in \{0,1,2\}$ where $v_f(x)$ and $e_f(x)$ represent the number of vertices and edges respectively labeled with x(x = 0,1,2). A graph with mean cordial labeling is called a mean cordial graph. In this chapter we study the mean cordial labeling pattern of ladder graph L_n and shadow graph of $K_{1,n}$.

KEYWORDS: mean cordial labeling, ladder graph, shadow graph.

I. INTRODUCTION

The graphs under consideration are simple, finite, and undirected. V(G) and E(G) represent the set of vertices and set of edges of a graph G, respectively. The number of elements of V(G) and E(G) is called the order and size of G respectively. Tracking system, route design, broadband networks, astrographs, and coding-encoding are just a few of the fields where labeled graphs are used(Gallian, 2022). Cahit introduced the cordial labeling concept in 1987(Cahit, 1987).

Definition 1: Let $f : V(G) \rightarrow \{0,1\}$ be a mapping. For every edge uv nominate the label |f(u) - f(v)|. f is called a cordial labeling if $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $\forall i, j \in \{0,1\}$ where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges respectively labelled with x(x = 0,1). A graph that admits a cordial labeling is called a cordial graph(Cahit, 1987).

Definition 2: Let $f : V(G) \to \{0,1,2\}$ be a function. For each edge uv assign the label $\left[\frac{f(u)+f(v)}{2}\right]$. f is called a mean cordial labeling of G if $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $\forall i, j \in \{0,1,2\}$ where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges respectively labeled with x(x = 0,1,2). A graph that admits a mean cordial labeling is called a mean cordial graph(Ponraj et al., 2012).

If we reduce the range set of f to $\{0,1\}$ then this definition becomes the definition of product cordial labeling.M. Sundaram, R. Ponraj, and Somasundaram established the concept of cordial product labelling(Sundaram et al., 2004).

I examine the mean cordial labeling pattern of lattice graphs. The sign[x]represents greatest integer less than or equal to x and [x]represents smallest integer greater than or equal to x. Terminologies not described here are used in Harary's context(*Book 1 (Harary).Pdf*, n.d.).

Definition 3: A cartesian product of two graphs G and H is the graph $G \times H$ such that its vertex set is a Cartesian product of V (G) and V (H) i.e. V ($G \times H$) = V (G) × V (H) = { (x, y) : $x \in V$ (G), $y \in V$ (H) }and its edge set is

| ISSN: 2582-7219 | <u>www.ijmrset.com</u> | Impact Factor: 7.54|

Volume 6, Issue 5, May 2023

| DOI:10.15680/IJMRSET.2023.0605051|

defined as $E(G \times H) = \{ ((x_1, x_2), (y_1, y_2)) : x_1 = y_1 \text{ and } (x_2, y_2) \in E(H) \text{ or } x_2 = y_2 \text{ and } (x_1, y_1) \in E(G) \}$ ("Cartesian Product of Graphs," 2022).

Definition 4: The ladder graph L_n is defined as the cartesian product of P_n by K_2 where P_n is a path with n vertices and K_2 is a complete graph with two vertices. Here $V_{Ln} = \{u_i, v_i: 1 \le i \le n\}$ and $E_{Ln} = \{e_i = u_i u_{i+1} : 1 \le i \le n - 1\} \cup \{f_i = u_i v_i : 1 \le i \le n\} \cup \{g_i = v_i v_{i+1} : 1 \le i \le n - 1\}$.(Sumathi, 2018)

Figure 1: L_4

Definition 5: The shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G say G' and G''. Join each vertex u' in G' to the neighbours of the corresponding vertex v' in G''.(Jayasekaran, 2018).

Figure 2: Shadow graph of $K_{1.5}$

Definition 6: Let f be a function from V(G) to $\{0,1,2\}$. For each edge uv of G, assign the label $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil$ or $\left\lfloor \frac{f(u)+f(v)}{2} \right\rfloor$. f is called a mean cordial labeling of G if $\left| v_f(i) - v_f(j) \right| \le 1$ and $\left| e_f(i) - e_f(j) \right| \le 1$, $\forall i, j \in \{0,1,2\}$ where $v_f(x)$ and $e_f(x)$ represent the number of vertices and edges respectively labeled as x(x = 0,1,2). An illustration using mean cordial labeling is referred to as a mean cordial graph.

MAIN RESULTS:

Theorem 1: Let L_n be a ladder graph, then L_n admits mean cordial labeling.

Proof. Define $f : V(G) \to \{0,1,2\}$ and $g : E(G) \to \{0,1,2\}$.

Case(i): $n \equiv 0 \pmod{3}$: That is, n = 3k, where k is positive integer.

UMRSET

| ISSN: 2582-7219 | <u>www.ijmrset.com</u> | Impact Factor: 7.54

Volume 6, Issue 5, May 2023

| DOI:10.15680/IJMRSET.2023.0605051|

We define vertex labeling as follows: $f(u_i) = f(v_i) = \begin{cases} 2 & 1 \le i \le k \\ 1 & k+1 \le i \le 2k \\ 0 & 2k+1 \le i \le 3k. \end{cases}$

We define edge labeling as follows:

 $g(u_i u_{i+1}) = \left\lfloor \frac{f(u_i) + f(u_{i+1})}{2} \right\rfloor \quad 1 \le i \le 3k - 1,$

 $g(v_i v_{i+1}) = \left|\frac{f(v_i) + f(v_{i+1})}{2}\right| \quad 1 \le i \le 3k - 1 \text{ and}$

 $g(u_i v_i) = \left| \frac{f(u_i) + f(v_i)}{2} \right| \qquad 1 \le i \le 3k.$

In this case, we have $v_f(0) = v_f(1) = v_f(2) = 2k$, and

 $e_g(0) = e_g(2) = 3k - 1, e_g(1) = 3k.$

Case(ii): $n \equiv 1 \pmod{3}$: That is, n = 3k + 1, where k is positive integer.

We define vertex labeling as follows: $f(u_i) = f(v_i) = \begin{cases} 2 & 1 \le i \le k \\ 1 & k+1 \le i \le 2k \\ 0 & 2k+1 \le i \le 3k. \end{cases}$

$$f(u_{3k+1}) = 1$$
; $f(v_{3k+1}) = 2$

We define edge labeling as follows:

$$g(u_{i} u_{i+1}) = \left\lfloor \frac{f(u_{i}) + f(u_{i+1})}{2} \right\rfloor 1 \le i \le 3k,$$

$$g(v_{i} v_{i+1}) = \left\lceil \frac{f(v_{i}) + f(v_{i+1})}{2} \right\rceil 1 \le i \le 3k \quad \text{and}$$

$$g(u_{i} v_{i}) = \left\lceil \frac{f(u_{i}) + f(v_{i})}{2} \right\rceil 1 \le i \le 3k + 1.$$

In this case, we have $v_f(0) = 2k$, $v_f(1) = v_f(2) = 2k + 1$, and

$$e_g(0) = e_g(2) = 3k, e_g(1) = 3k + 1.$$

Case(iii): $n \equiv 2 \pmod{3}$: That is, n = 3k + 2, where k is positive integer.

We define vertex labeling as follows: $f(u_i) = f(v_i) = \begin{cases} 2 & 1 \le i \le k. \\ 1 & k+1 \le i \le 2k \\ 0 & 2k+1 \le i \le 3k. \end{cases}$

```
f(u_{3k+1}) = 1 ; f(v_{3k+1}) = 2f(u_{3k+2}) = 0 ; f(v_{3k+2}) = 2
```


| ISSN: 2582-7219 | <u>www.ijmrset.com</u> | Impact Factor: 7.54|

Volume 6, Issue 5, May 2023

| DOI:10.15680/IJMRSET.2023.0605051|

We define edge labeling as follows:

 $g\,(u_i\,u_{i+1})\,=\,\left|\frac{f(u_i)+f(u_{i+1})}{2}\right|1\,\leq\,i\,\leq\,3k+1\,,$

 $g(v_i v_{i+1}) = \left[\frac{f(v_i) + f(v_{i+1})}{2}\right] 1 \le i \le 3k + 1$ and

$$g(u_i v_i) = \left| \frac{f(u_i) + f(v_i)}{2} \right| 1 \le i \le 3k + 2.$$

In this case, we have $v_f(0) = v_f(1) = 2k + 1$, $v_f(2) = 2k + 2$, and

$$e_g(0) = e_g(2) = 3k + 1, e_g(1) = 3k + 2.$$

In all the above cases the conditions, $|v_f(i) - v_f(j)| \le 1$ and $|e_g(i) - e_g(j)| \le 1$, $\forall i, j \in \{0, 1, 2\}$, are satisfied by the labeling pattern.

Example 1. Figure 3 represents the mean cordial labeling of ladder graph L_5 .

This is the case involving $n \equiv 2 \pmod{3}$.

Figure 3: Ladder graph L_5

Theorem 2: Let $D_2(K_{1,n})$ be a shadow graph of $K_{1,n}$, then $D_2(K_{1,n})$ admits mean cordial labeling.

Proof: Define $f : V(G) \to \{0,1,2\}$ and $g : E(G) \to \{0,1,2\}$.

Case(i): $n \equiv 0 \pmod{3}$: That is, n = 3k, where k is positive integer.

We define vertex labelling as follows.

$$f(u) = 0, f(v) = 2$$

$$f(u_i) = f(v_i) = \begin{cases} 2 & 1 \le i \le k \\ 1 & k+1 \le i \le 2k \\ 0 & 2k+1 \le i \le 3k \end{cases}$$

We define edge labeling as follows:

$$g(uu_i) = \left\lfloor \frac{f(u)+f(u_i)}{2} \right\rfloor \qquad 1 \le i \le 3k,$$

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54

Volume 6, Issue 5, May 2023

| DOI:10.15680/IJMRSET.2023.0605051|

$$g(vv_i) = \left|\frac{f(v) + f(v_i)}{2}\right| \qquad 1 \le i \le 3k$$

 $g(uv_i) = \left\lfloor \frac{f(u) + f(v_i)}{2} \right\rfloor \qquad 1 \le i \le 3k \text{ and}$ $g(vu_i) = \left\lfloor \frac{f(v) + f(u_i)}{2} \right\rfloor \qquad 1 \le i \le 3k$

In this case, we have, $v_f(0) = v_f(2) = 2k + 1$, $v_f(1) = 2k$, and

$$e_g(0) = e_g(1) = e_g(2) = 4k$$

Case(ii): $n \equiv 1 \pmod{3}$: That is, n = 3k + 1, where k is positive integer.

We define vertex labeling as follows:

$$f(u) = 0, f(v) = 2$$

$$f(u_i) = f(v_i) = \begin{cases} 2 & 1 \le i \le k \\ 1 & k+1 \le i \le 2k \\ 0 & 2k+1 \le i \le 3k. \end{cases}$$

 $f(u_{3k+1}) = 2 \ ; \ f(v_{3k+1}) = 1$

We define edge labeling as follows:

$$g(uu_i) = \left\lfloor \frac{f(u) + f(u_i)}{2} \right\rfloor \qquad 1 \le i \le 3k + 1,$$
$$g(vv_i) = \left\lceil \frac{f(v) + f(v_i)}{2} \right\rceil \qquad 1 \le i \le 3k + 1$$

 $g(uv_i) = \left\lfloor \frac{f(u)+f(v_i)}{2} \right\rfloor \qquad 1 \le i \le 3k+1 \text{ and}$ $g(vu_i) = \left\lfloor \frac{f(v)+f(u_i)}{2} \right\rfloor \qquad 1 \le i \le 3k+1$

In this case, we have, $v_f(0) = \ v_f(1) = 2k+1$, $v_f(2) = \ 2k+2,$ and

$$e_g(0) = e_g(1) = 4k + 1, e_g(2) = 4k + 2$$

Case(iii): $n \equiv 2 \pmod{3}$: That is, n = 3k + 2, where k is positive integer.

We define vertex labeling as follows:

$$f(u) = 0, f(v) = 2$$

$$f(u_i) = f(v_i) = \begin{cases} 2 & 1 \le i \le k. \\ 1 & k+1 \le i \le 2k \\ 0 & 2k+1 \le i \le 3k \end{cases}$$

 $f(u_{3k+1}) = 1$; $f(v_{3k+1}) = 2$

IJMRSET © 2023

An ISO 9001:2008 Certified Journal

| ISSN: 2582-7219 | <u>www.ijmrset.com</u> | Impact Factor: 7.54| | Volume 6, Issue 5, May 2023 |

| DOI:10.15680/IJMRSET.2023.0605051|

 $f(u_{3k+2}) = 1$; $f(v_{3k+2}) = 0$

We define edge labeling as follows:

 $g(uu_i) = \left\lfloor \frac{f(u) + f(u_i)}{2} \right\rfloor \qquad 1 \le i \le 3k + 2,$ $g(vv_i) = \left\lfloor \frac{f(v) + f(v_i)}{2} \right\rfloor \qquad 1 \le i \le 3k + 2$

 $g(uv_i) = \left\lfloor \frac{f(u) + f(v_i)}{2} \right\rfloor \qquad 1 \le i \le 3k + 2 \text{ and}$ $g(vu_i) = \left\lfloor \frac{f(v) + f(u_i)}{2} \right\rfloor \qquad 1 \le i \le 3k + 2$

In this case, we have, $v_f(0) = v_f(1) = v_f(2) = 2k + 2$, and

$$e_g(0) = e_g(2) = 4k + 3, e_g(1) = 4k + 2$$

In all above cases the conditions,

In all the above cases the conditions, $|v_f(i) - v_f(j)| \le 1$ and $|e_g(i) - e_g(j)| \le 1$, $\forall i, j \in \{0, 1, 2\}$, are satisfied by the labeling pattern.

Example 1. Figure 4 represents the mean cordial labeling of the graph $D_2(K_{1,5})$.

This is the case involving $n \equiv 2 \pmod{3}$.

Figure 4: Shadow graph $D_2(K_{1,5})$

JMRSET

| ISSN: 2582-7219 | <u>www.ijmrset.com</u> | Impact Factor: 7.54|

Volume 6, Issue 5, May 2023

| DOI:10.15680/IJMRSET.2023.0605051|

REFERENCES

- 1. Book 1 (Harary).pdf. (n.d.). Retrieved May 19, 2023, from https://users.metu.edu.tr/aldoks/341/Book%201%20(Harary).pdf
- 2. Cahit, I. (1987). Cordial graphs: A weaker version of graceful and harmonious graphs. https://www.academia.edu/850965/Cordial_graphs_a_weaker_version_of_graceful_and_harmonious_graphs
- 3. Jayasekaran. (2018). EDGE TRIMAGIC TOTAL LABELINGS OF SOME SHADOW AND SPLITTING GRAPHS. International Journal of Pure and Applied Mathematics, 303-313.
- 4. Sumathi. (2018). Quotient labeling of some ladder graphs. American Journal of Engineering Research, 38-42.
- 5. Cartesian product of graphs. (2022). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Cartesian_product_of_graphs&oldid=1106268233
- 6. Gallian, J. A. (2022). A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 1000, DS6: Dec 2. https://doi.org/10.37236/11668
- 7. Ponraj, R., Sivakumar, M., & Sundaram, M. (2012). Mean cordial labeling of graphs. Open Journal of Discrete Mathematics, 2(4), 145.
- Sundaram, M., Ponraj, R., & Somasundaram, S. (2004). Product cordial labeling of graphs. Bulletin of Pure and Applied Sciences, 23E, 155–163.