
e-ISSN:2582-7219

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH

IN SCIENCE, ENGINEERING AND TECHNOLOGY

Volume 6, Issue 9, September 2023

ISN
 INTERNATIONAL STANDARD SERIAL NUMBER INDIA

Impact Factor: 7.54

International Journal Of Multidisciplinary Research In Science, Engineering and Technology (IJMRSET)

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54| Monthly Peer Reviewed \& Referred Journal |
| Volume 6, Issue 9, September 2023 |
| DOI:10.15680/IJMRSET.2023.0609012 |

Quadratic Diophantine Equations of the Form

$$
2 x y=n(x+y) \text { and } 3 x y=n(x+y)
$$

J. Shanthi ${ }^{1}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.

Abstract

In this paper ,the quadratic diophantine equations of the form $2 \mathrm{xy}=\mathrm{n}(\mathrm{x}+\mathrm{y})$ and $3 \mathrm{xy}=\mathrm{n}(\mathrm{x}+\mathrm{y})$ have been considered. An attempt has been made to obtain non-zero distinct integer solutions to the above quadratic diophantine equations through elementary methods.

KEYWORDS: Quadratic equation, Non-homogeneous quadratic, Integer solutions

I. INTRODUCTION

It is well-known that diophantine equations, homogeneous or non- homogeneous, have aroused the interest of many mathematicians. There is a vast general theory for quadratic equations. In particular, the theory of quadratic equations in two variables is a very developed theory but still an important topic of current research. For example, [17] exhibits sets of integer solutions to the second degree Diophantine equations of the form $A x^{2}-B y^{2}=C$,where A, B, C take special values. This paper aims at finding integer solutions to second degree Diophantine equations of the form $2 x y=n(x+y)$ and $3 x y=n(x+y)$, where n is any non-zero positive integer. Different sets of integer solutions to the above equations are respectively obtained through employing elementary methods.

Method of analysis
Diophantine Equation of the form $2 \mathrm{x} y=\mathrm{n}(\mathrm{x}+\mathrm{y})$
The non-homogeneous second degree Diophantine to be solved is

$$
\begin{equation*}
2 \mathrm{xy}=\mathrm{n}(\mathrm{x}+\mathrm{y}) \tag{1}
\end{equation*}
$$

The process of obtaining different sets of integer solutions to (1) is illustrated below :
| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54| Monthly Peer Reviewed \& Referred Journal |
| Volume 6, Issue 9, September 2023|
| DOI:10.15680/IJMRSET.2023.0609012 |
Illustration 1:
Introduction of the transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{k} \mathrm{y}, \mathrm{k} \geq 1 \tag{2}
\end{equation*}
$$

in (1) leads to

$$
2 \mathrm{ky}=\mathrm{n}(\mathrm{k}+1)
$$

which is satisfied by

$$
\begin{equation*}
\mathrm{n}=2 \mathrm{ks}, \mathrm{y}=(\mathrm{k}+1) \mathrm{s} \tag{3}
\end{equation*}
$$

From (2), we have

$$
\begin{equation*}
x=k(k+1) s \tag{4}
\end{equation*}
$$

Thus, (3) \& (4) represent the integer solutions to (1).
Illustration 2 :
Introducing the transformations

$$
\begin{equation*}
x=u+v, y=u-v, u \neq v \neq 0 \tag{5}
\end{equation*}
$$

in (1), we have

$$
u^{2}-n u-v^{2}=0
$$

Treating the above equation as quadratic in u and solving for u , we get

$$
\begin{equation*}
\mathrm{u}=\frac{\mathrm{n} \pm \sqrt{\mathrm{n}^{2}+4 \mathrm{v}^{2}}}{2} \tag{6}
\end{equation*}
$$

It is possible to choose the values for $\mathrm{n} \& \mathrm{v}$ so that the square-root on the
R.H.S. of (6) is eliminated and the corresponding values for u are obtained.

In view of (5), the respective values of $x \& y$ satisfying (1) are found.
For simplicity and brevity ,the integer solutions to (1) thus obtained are presented
in Table 1 as follows :
| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54| Monthly Peer Reviewed \& Referred Journal|
| Volume 6, Issue 9, September 2023|
| DOI:10.15680/IJMRSET.2023.0609012 |
Table 1 - Integer solutions

n	x	y
$3 s$	$6 s$	$2 s$
$3 s$	s	$-3 s$
$2 s^{2}-2, s \geq 1$	$2 s^{2}+2 s$	$2 s^{2}-2 s$
$2 s^{2}-2, s \geq 1$	$2 s-2$	$-2 s-2$
$p^{2}-q^{2}, p \geq q \geq 0$	$p(p+q)$	$p(p-q)$
$p^{2}-q^{2}, p \geq q \geq 0$	$q(p-q)$	$-q(p+q)$
$8 p q$	$4 p(p+q)$	$4 q(p+q)$
$8 p q$	$4 q(p-q)$	$4 p(q-p)$

Diophantine Equation of the form $3 x y=n(x+y)$

The non-homogeneous second degree Diophantine to be solved is

$$
\begin{equation*}
3 \mathrm{xy}=\mathrm{n}(\mathrm{x}+\mathrm{y}) \tag{7}
\end{equation*}
$$

The process of obtaining different sets of integer solutions to (7) is illustrated below :

Illustration 3:

Introduction of the transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{k} \mathrm{y}, \mathrm{k} \geq 1 \tag{8}
\end{equation*}
$$

in (7) leads to

$$
3 \mathrm{ky}=\mathrm{n}(\mathrm{k}+1)
$$

which is satisfied by

$$
\begin{equation*}
\mathrm{n}=3 \mathrm{ks}, \mathrm{y}=(\mathrm{k}+1) \mathrm{s} \tag{9}
\end{equation*}
$$

From (8), we have

$$
\begin{equation*}
\mathrm{x}=\mathrm{k}(\mathrm{k}+1) \mathrm{s} \tag{10}
\end{equation*}
$$

Thus, (9) \& (10) represent the integer solutions to (7).
| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54| Monthly Peer Reviewed \& Referred Journal |
| Volume 6, Issue 9, September 2023|
| DOI:10.15680/IJMRSET.2023.0609012 |
Illustration 4 :
Introducing the transformations (5) in (7), we have

$$
3 u^{2}-2 n u-3 v^{2}=0
$$

Treating the above equation as quadratic in u and solving for u, we get

$$
\begin{equation*}
\mathrm{u}=\frac{\mathrm{n} \pm \sqrt{\mathrm{n}^{2}+9 \mathrm{v}^{2}}}{3} \tag{11}
\end{equation*}
$$

It is possible to choose the values for $n \& v$ so that the square-root on the
R.H.S. of (11) is eliminated and the corresponding values for u are obtained.

In view of (5), the respective values of $x \& y$ satisfying (7) are found.
For simplicity and brevity ,the integer solutions to (7) thus obtained are presented
in Table 2 as follows:
Table 2 - Integer solutions

n	X	y
$9 r^{2}-s^{2}, 3 r \geq s \geq 0$	$6 r^{2}+2 r s$	$6 r^{2}-2 r s$
$18 r s$	$6 r^{2}+6 r s$	$6 s^{2}+6 r s$
$18 s^{2}+18 s+4$	$12 s^{2}+14 s+4$	$12 s^{2}+10 s+2$
$6 s^{2}+6 s$	$4 s^{2}+6 s+2$	$4 s^{2}+2 s$
$6 s^{2}+6 s$	$2 s$	$-2-2 s$
$2 s^{2}+2 s-4$	$2 s-2$	$-2 s-4$
$4 s$	$4 s$	$2 s$
$12 s$	$2 s$	$-4 s$

It is worth to mention that, in [8] ,the authors have presented integer solutions when n takes particular values.. Here, we have exhibited the integer solutions corresponding to other values of n also.

II. CONCLUSION

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the above quadratic Diophantine equation through elementary methods. One may search for the integer solutions to other forms of second degree equations with multiple variables.

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 7.54| Monthly Peer Reviewed \& Referred Journal |

| Volume 6, Issue 9, September 2023|
| DOI:10.15680/IJMRSET.2023.0609012 |

REFERENCES

[1]. S.Vidhyalakshmi, J.Shanthi, M.A.Gopalan, "A Search on the integer solutions of Pell-like equation $a x^{2}-(a-1) y^{2}=a, a \geq 1$ " International Journal of Advanced Scientific Research,Volume 5, Issue 2, Page No:29-34, 2020 .
[2]. J.Shanthi, Ms.V.Bahavathi, M.A.Gopalan, "On the Positive Pellian
Equation $y^{2}=35 x^{2}+29 "$, International Journal of Enhanced Research in
Science, Technology and Engineering, , Volume 10, Issue 4, Page No:40-48, April 2021,
[3]. J.Shanthi ,M.Parkavi ,"Observations on the Hyperbola $x^{2}=20 y^{2}+45 "$ IJRPR ,Volume 5 ,Issue 5 ,Page No:570-583, 2023
[4]. J.Shanthi ,P.Deepalakshmi ,M.A.Gopalan ,"A Study on the Positive Pell
Equation $y^{2}=42 x^{2}+7{ }^{\prime}$,IRJEdT ,Volume 1,Issue 5 ,Page No:107-118,2021
[5]. J.Shanthi ,M.A.Gopalan ,"A Study on the Pell-like Equation
$3 x^{2}-8 y^{2}=-20 "$, Juni Kyat, Volume 11, Issue 2 ,Page No:35-43,2021
[6].J.Shanthi ,M.A.Gopalan ,"A Study on the Hyperbola $y^{2}=14 x^{2}+1$ ",EPRAInternational Journal of Multidisciplinary Research (IJMR),Volume 6,Issue 12, Page No:122-126,2020
[7].M.A.Gopalan ,J.Shanthi ,S.Vidhyalakshmi ,"A Study on the Hyperbola
$9 x^{2}-7 y^{2}=8 "$, IJEDR ,Volume 9,Issue 2,Page No:160-168,2021
[8].Hari Kishan ,Megha Rani ,Smiti Agarwal ,"The Diophantine Equations of Second and Higher Degree of the Form $3 x y=n(x+y)$ and $3 x y z=n(x y+y z+z x)$ etc ",Asian Journal of Algebra, Volume 4,Issue 1,Page No:31-37,2011
 Impact Factor 7.54

ISN
INTERNATIONAL
STANDARD
SERIAL
NUMBER
INDIA

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH

 in SCIENCE, ENGINEERING AND TECHNOLOGY| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |

